Hsp70 chaperones: Cellular functions and molecular mechanism
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bukau B., Deuerling E., Pfund C. and Craig E. A. (2000) Getting newly synthesized proteins into shape. Cell 101: 119–122
Hartl F. U. and Hayer-Hartl M. (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852–1858.
Young J. C., Barral J. M. and Ulrich Hartl F. (2003) More than folding: localized functions of cytosolic chaperones. Trends. Biochem. Sci. 28: 541–547
Neupert W. and Brunner M. (2002) The protein import motor of mitochondria. Nat. Rev. Mol. Cell. Biol. 3: 555–565
Ryan M. T. and Pfanner N. (2002) Hsp70 proteins in protein translocation. Adv. Protein Chem. 59: 223–242
Pratt W. B. and Toft D. O. (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. (Maywood) 228: 111–133
Toft D. O. (1999) Control of hormone receptor function by molecular chaperones and folding catalysts. In: Molecular Chaperones and Folding Catalysts. Regulation, Cellular Function and Mechanism, pp. 313–327, Bukau B. (ed.), Harwood Academic Publishers, Amsterdam
Ben-Zvi A. P. and Goloubinoff P. (2001) Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J. Struct. Biol. 135: 84–93
Pierpaoli E. V., Sandmeier E., Baici A., Schönfeld H.-J., Gisler S. and Christen, P. (1997) The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system. J. Mol. Biol. 269: 757–768
Mayer M. P., Rüdiger S. and Bukau B. (2000) Molecular basis for interactions of the DnaK chaperone with substrates. Biol. Chem. 381: 877–885
Slepenkov S. V. and Witt S. N. (2002) The unfolding story of the Escherichia coli Hsp70 DnaK: is DnaK a holdase or an unfoldase? Mol. Microbiol. 45: 1197–1206
Glover J. R. and Lindquist S. (1998) Hsp104, Hsp70 and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94: 73–82
Goloubinoff P., Mogk A., Peres Ben Zvi A., Tomoyasu T. and Bukau B. (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96: 13732–13737
Motohashi K., Watanabe Y., Yohda M. and Yoshida M. (1999) Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc. Natl. Acad. Sci. USA 96: 7184–7189
Diamant S., Peres Ben-Zvi A., Bukau B. and Goloubinoff P. (2000) Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J. Biol. Chem. 275: 21107–21113
Ben-Zvi A., De Los Rios P., Dietler G. and Goloubinoff P. (2004) Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual Hsp70 chaperones. J. Biol. Chem. 279: 37298–37303
Pratt W. B. (1997) The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annu. Rev. Pharmacol. Toxicol. 37: 297–326
Jolly C. and Morimoto R. I. (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer. Inst. 92: 1564–1572
Bonini N. M. (2002) Chaperoning brain degeneration. Proc. Natl. Acad. Sci. USA 99Suppl. 4: 16407–16411
Sakahira H., Breuer P., Hayer-Hartl M. K. and Hartl F. U. (2002) Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc. Natl. Acad. Sci. USA 99Suppl. 4: 16412–16418
Millar D. G., Garza K. M., Odermatt B., Elford A. R., Ono N., Li, Z. et al. (2003) Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat. Med. 9: 1469–1476
Mayer M. P. (2004) Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev. Physiol. Biochem. Pharmacol. 9 Jul. [Epub ahead of print]
Kregel K. C. (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92: 2177–2186
Cagney G., Amiri S., Premawaradena T., Lindo M. and Emili A. (2003) In silico proteome analysis to facilitate proteomics experiments using mass spectrometry. Proteome Sci 1: 5
Gaiddon C., Lokshin M., Ahn J., Zhang T. and Prives C. (2001) A subset of tumor-derived mutant forms of p53 downregulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell. Biol. 21: 1874–1887
King F. W., Wawrzynow A., Hohfeld J. and Zylicz M. (2001) Co-chaperones Bag-1, Hop and Hsp40 regulate Hsc70 and Hsp90 interactions with wild-type or mutant p53. EMBO J. 20: 6297–6305.
Meacham, G. C., Lu, Z., King, S., Sorscher, E., Tousson, A., and Cyr, D. M. (1999) The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J. 18: 1492–1505
Shinder G. A., Lacourse M. C., Minotti S. and Durham, H. D. (2001) Mutant Cu/Zn-superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosis. J. Biol. Chem. 276: 12791–12796
Roberts S. P. and Feder M. E. (1999) Natural hyperthermia and expression of the heat shock protein Hsp70 affect developmental abnormalities in Drosophila melanogaster. Oecologia 121: 323–329
Rutherford S. L. and Lindquist S. (1998) Hsp90 as a capacitor for morphological evolution. Nature 396: 336–342
Queitsch C., Sangster T. A. and Lindquist S. (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417: 618–624
Rogue P. J., Ritz M. F. and Malviya A. N. (1993) Impaired gene transcription and nuclear protein kinase C activation in the brain and liver of aged rats. FEBS Lett. 334: 351–354
Njemini R., Abeele M. V., Demanet C., Lambert M., Vandebosch S. and Mets T. (2002) Age-related decrease in the inducibility of heat-shock protein 70 in human peripheral blood mononuclear cells. J. Clin. Immunol. 22: 195–205
Meacham G. C., Patterson C., Zhang W., Younger J. M. and Cyr D. M. (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat. Cell Biol. 3: 100–105
Urushitani M., Kurisu J., Tateno M., Hatakeyama S., Nakayama K., Kato S. et al. (2004) CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70. J. Neurochem. 90: 231–244
Leone G., Coffey M. C., Gilmore R., Duncan R., Maybaum L. and Lee P. W. (1996) C-terminal trimerization, but not Nterminal trimerization, of the reovirus cell attachment protein Is a posttranslational and Hsp70/ATP-dependent process. J. Biol. Chem. 271: 8466–8471
Young J. C., Hoogenraad N. J. and Hartl F. U. (2003) Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112: 41–50
Sakahira H. and Nagata S. (2002) Co-translational folding of caspase-activated DNase with Hsp70, Hsp40 and inhibitor of caspase-activated DNase. J. Biol. Chem. 277: 3364–3370
Jäättelä M., Wissing D., Kokholm K., Kallunki T. and Egeblad M. (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J. 17: 6124–6134
Nylandsted J., Rohde M., Brand K., Bastholm L., Elling F. and Jaattela M. (2000) Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc. Natl. Acad. Sci. USA 97: 7871–7876
Klucken J., Shin Y., Masliah E., Hyman B. T. and McLean P. J. (2004) Hsp70 reduces alpha-synuclein aggregation and toxicity. J. Biol. Chem. 279: 25497–25502
Gutsmann-Conrad A., Heydari A. R., You S. and Richardson A. (1998) The expression of heat shock protein 70 decreases with cellular senescence in vitro and in cells derived from young and old human subjects. Exp. Cell. Res. 241: 404–413
Ambra R., Mocchegiani E., Giacconi R., Canali R., Rinna A., Malavolta M. et al. (2004) Characterization of the hsp70 response in lymphoblasts from aged and centenarian subjects and differential effects of in vitro zinc supplementation. Exp. Gerontol. 39: 1475–1484
Flaherty K. M., Deluca-Flaherty C. and McKay D. B. (1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346: 623–628
Zhang Y. and Zuiderweg E. R. (2004) The 70-kDa heat shock protein chaperone nucleotide-binding domain in solution unveiled as a molecular machine that can reorient its functional subdomains. Proc. Natl. Acad. Sci. USA 101: 10272–10277
Gässler C. S., Wiederkehr T., Brehmer D., Bukau B. and Mayer, M. P. (2001) Bag-1M accelerates nucleotide release for human Hsc70 and Hsp70 and can act concentration-dependent as positive and negative cofactor. J. Biol. Chem. 276: 32538–32544
Ha J.-H., Johnson E. R., McKay D. B., Sousa M. C., Takeda S. and Wilbanks S. M. (1999) Structure and mechanism of Hsp70 proteins. In: Molecular Chaperones and Folding Catalysts. Regulation, Cellular Function and Mechanism, pp. 573–607, Bukau B. (ed.), Harwood Academic Publishers, Amsterdam
Karzai A. W. and McMacken R. (1996) A bipartite signaling mechanism involved in DnaJ-mediated activation of the Escherichia coli DnaK protein. J. Biol. Chem. 271: 11236–11246
Barouch W., Prasad K., Greene L. and Eisenberg E. (1997) Auxilin-induced interaction of the molecular chaperone Hsc70 with clathrin baskets. Biochemistry 36: 4303–4308
Laufen T., Mayer M. P., Beisel C., Klostermeier D., Reinstein J. and Bukau B. (1999) Mechanism of regulation of Hsp70 chaperones by DnaJ co-chaperones. Proc. Natl. Acad. Sci. USA 96: 5452–5457
Liberek K., Marszalek J., Ang D., Georgopoulos C. and Zylicz M. (1991) Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. USA 88: 2874–2878
Wall D., Zylicz M. and Georgopoulos C. (1994) The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for λ replication. J. Biol. Chem. 269: 5446–5451
Gamer J., Multhaup G., Tomoyasu T., McCarty J. S., Rudiger S., Schonfeld H. J. et al. (1996) A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. EMBO J. 15: 607–617
Laufen T., Zuber U., Buchberger A. and Bukau B. (1998) DnaJ proteins. In: Molecular Chaperones in Proteins: Structure, Function and Mode of Action, pp. 241–274, Fink A. L. and Goto Y. (eds), Marcel Dekker, New York
Misselwitz B., Staeck O. and Rapoport T. A. (1998) J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. Mol. Cell. 2: 593–603
Silberg J. J. and Vickery L. E. (2000) Kinetic characterization of the ATPase cycle of the molecular chaperone Hsc66 from Escherichia coli. J. Biol. Chem. 275: 7779–7786
Silberg J. J., Tapley T. L., Hoff K. G. and Vickery L. E. (2004) Regulation of the HscA ATPase reaction cycle by the cochaperone HscB and the iron-sulfur cluster assembly protein IscU. J. Biol. Chem. 279: 53924–53931
Brehmer D., Rüdiger S., Gässler C. S., Klostermeier D., Packschies L., Reinstein J. et al. (2001) Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat. Struct. Biol. 8: 427–432
Harrison C. J., Hayer-Hartl M., Di Liberto M., Hartl F.-U. and Kuriyan J. (1997) Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276: 431–435
Sondermann H., Scheufler C., Schneider C., Hohfeld J., Hartl F. U. and Moarefi I. (2001) Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291: 1553–1557.
Briknarova K., Takayama S., Brive L., Havert M. L., Knee D. A., Velasco J. et al. (2001) Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein. Nat. Struct. Biol. 8: 349–352
Brehmer D., Gassler C., Rist W., Mayer M. P. and Bukau B. (2004) Influence of GrpE on DnaK-substrate interactions. J. Biol. Chem. 279: 27957–27964
Takayama S. and Reed J. C. (2001) Molecular chaperone targeting and regulation by BAG family proteins. Nat. Cell. Biol. 3: E237–241
Höhfeld J. and Jentsch S. (1997) GrpE-like regulation of the Hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J. 16: 6209–6216
Briknarova K., Takayama S., Homma S., Baker K., Cabezas E., Hoyt D. W. et al. (2002) BAG4/SODD protein contains a short BAG domain. J. Biol. Chem. 277: 31172–31178
Kabani M., Beckerich J. M. and Gaillardin C. (2000) Sls1p stimulates Sec63p-mediated activation of Kar2p in a conformation-dependent manner in the yeast endoplasmic reticulum. Mol. Cell. Biol. 20: 6923–6934
Chung K. T., Shen Y. and Hendershot L. M. (2002) BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J. Biol. Chem. 277: 47557–47563
Steel G. J., Fullerton D. M., Tyson J. R. and Stirling C. J. (2004) Coordinated activation of Hsp70 chaperones. Science 303: 98–101
Craven R. A., Tyson J. R. and Stirling C. J. (1997) A novel subfamily of Hsp70s in the endoplasmic reticulum. Trends Cell Biol. 7: 277–282
Tyson J. R. and Stirling C. J. (2000) LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J. 19: 6440–6452
Kabani M., McLellan C., Raynes D. A., Guerriero V. and Brodsky J. L. (2002) HspBP1, a homologue of the yeast Fes1 and Sls1 proteins, is an Hsc70 nucleotide exchange factor. FEBS Lett. 531: 339–342
Kabani M., Beckerich J. M. and Brodsky J. L. (2002) Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p. Mol. Cell. Biol. 22: 4677–4689
Zhu X., Zhao X., Burkholder W. F., Gragerov A., Ogata C. M., Gottesman M. et al. (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272: 1606–1614
Rüdiger S., Germeroth L., Schneider-Mergener J. and Bukau B. (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16: 1501–1507
Rüdiger S., Schneider-Mergener J. and Bukau B. (2001) Its substrate specificity characterizes the DnaJ chaperone as scanning factor for the DnaK chaperone. EMBO J. 20: 1–9
Tapley T. L. and Vickery L. E. (2004) Preferential substrate binding orientation by the molecular chaperone HscA. J. Biol. Chem. 279: 28435–28442
Cupp-Vickery J. R., Peterson J. C., Ta D. T. and Vickery L. E. (2004) Crystal structure of the molecular chaperone HscA substrate binding domain complexed with the IscU recognition peptide ELPPVKIHC. J. Mol. Biol. 342: 1265–1278
Mayer M. P., Schröder H., Rüdiger S., Paal K., Laufen T. and Bukau B. (2000) Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat. Struct. Biol. 7: 586–593
Pellecchia M., Montgomery D. L., Stevens S. Y., Vander Kooi C. W., Feng H., Gierasch L. M. et al. (2000) Structural insights into substrate binding by the molecular chaperone DnaK. Nat. Struct. Biol. 7: 298–303
Buczynski G., Slepenkov S. V., Sehorn M. G. and Witt S. N. (2001) Characterization of a lidless form of the molecular chaperone DnaK: deletion of the lid increases peptide on- and off-rate constants. J. Biol. Chem. 276: 27231–27236
Slepenkov S. V. and Witt S. N. (2002) Kinetic analysis of interdomain coupling in a lidless variant of the molecular chaperone DnaK: DnaK's lid inhibits transition to the low affinity state. Biochemistry 41: 12224–12235
Rüdiger S., Mayer M. P., Schneider-Mergener J. and Bukau B. (2000) Modulation of the specificity of the Hsp70 chaperone DnaK by altering a hydrophobic arch. J. Mol. Biol. 304: 245–251
Wang H., Kurochkin A. V., Pang Y., Hu W., Flynn G. C. and Zuiderweg E. R. P. (1998) NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction. Biochemistry 37: 7929–7940
Flynn G. C., Chappell T. G. and Rothman J. E. (1989) Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245: 385–390
Palleros D. R., Shi L., Reid K. L. and Fink A. L. (1994) Hsp70-protein complexes. J. Biol. Chem. 269: 13107–13114
Schmid D., Baici A., Gehring H. and Christen P. (1994) Kinetics of molecular chaperone action. Science 263: 971–973
Pierpaoli E. V., Gisler S. M. and Christen P. (1998) Sequence-specific rates of interaction of target peptides with the molecular chaperones DnaK and DnaJ. Biochemistry 37: 16741–16748
Takeda S. and McKay D. B. (1996) Kinetics of peptide binding to the bovine 70 kDa heat shock cognate protein, a molecular chaperone. Biochemistry 35: 4636–4644
Sousa M. C. and McKay D. B. (1998) The hydroxyl of threonine 13 of the bovine 70-kDa heat shock cognate protein is essential for transducing the ATP-induced conformational change. Biochemistry 37: 15392–15399
Kelley W. L. (1998) The J-domain family and the recruitment of chaperone power. Trends Biochem. Sci. 23: 222–227
Mayer M. and Bukau B. (1998) Hsp70 Chaperone systems: diversity of cellular functions and mechanism of action. Biol. Chem. 379: 261–268
Cheetham M. l. E. and Caplan A. J. (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chap. 3: 28–36
Linke K., Wolfram T., Bussemer J. and Jakob U. (2003) The roles of the two zinc binding sites in DnaJ. J. Biol. Chem. 278: 44457–44466
Kelley W. L. and Georgopoulos C. (1997) The T/t common exon of simian virus 40, JC and BK polyomavirus T antigens can functionally replace the J-domain of the Escherichia coli DnaJ molecular chaperone. Proc. Natl. Acad. Sci. USA 94: 3679–3684
Takayama S., Xie Z. and Reed J. C. (1999) An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J. Biol. Chem. 274: 781–786
Thress K., Song J., Morimoto R. I. and Kornbluth S. (2001) Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper. EMBO J. 20: 1033–1041
Miki K. and Eddy E. M. (2002) Tumor necrosis factor receptor 1 is an ATPase regulated by silencer of death domain. Mol. Cell. Biol. 22: 2536–2543
Alberti S., Esser C. and Hohfeld J. (2003) BAG-1 — a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chap. 8: 225–231
Brockmann C., Leitner D., Labudde D., Diehl A., Sievert V., Bussow K. et al. (2004) The solution structure of the SODD BAG domain reveals additional electrostatic interactions in the HSP70 complexes of SODD subfamily BAG domains. FEBS Lett. 558: 101–106
Gehring U. (2004) Biological activities of HAP46/BAG-1. The HAP46/BAG-1 protein: regulator of HSP70 chaperones, DNA-binding protein and stimulator of transcription. EMBO Rep. 5: 148–153
Doong H., Vrailas A. and Kohn E. C. (2002) What's in the ‘BAG'? — a functional domain analysis of the BAG-family proteins. Cancer Lett. 1188: 25–32
Takayama S., Krajewski S., Krajewski M., Kitada S., Zapata J. M., Kochel K. et al. (1998) Expression and location of Hsp70/Hsc-binding anti-apoptotic protein BAG-1 and its variants in normal tissues and tumor cell lines. Cancer Res. 58: 3116–3131
Lüders J., Demand J., Papp O. and Hohfeld J. (2000) Distinct isoforms of the cofactor BAG-1 differentially affect Hsc70 chaperone function. J. Biol. Chem. 275: 14817–14823
Lüders J., Demand J. and Hohfeld J. (2000) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J. Biol. Chem. 275: 4613–4617
Song J., Takeda M. and Morimoto R. I. (2001) Bag1-Hsp70 mediates a physiological stress signalling pathway that regulates Raf-1/ERK and cell growth. Nat. Cell Biol. 3: 276–282
Höhfeld J., Minami Y. and Hartl F. U. (1995) Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83: 589–598
Gebauer M., Zeiner M. and Gehring U. (1997) Proteins interacting with the molecular chaperone hsp70/hsc70: physical associations and effects on refolding activity. FEBS Lett. 417: 109–113
Kanelakis K. C., Murphy P. J., Galigniana M. D., Morishima Y., Takayama S., Reed J. C. et al. (2000) hsp70 interacting protein Hip does not affect glucocorticoid receptor folding by the hsp90-based chaperone machinery except to oppose the effect of BAG-1. Biochemistry 39: 14314–14321
Lambert C. and Prange R. (2003) Chaperone action in the posttranslational topological reorientation of the hepatitis B virus large envelope protein: Implications for translocational regulation. Proc. Natl. Acad. Sci. USA 100: 5199–5204
Nelson G. M., Prapapanich V., Carrigan P. E., Roberts P. J., Riggs D. L. and Smith D. F. (2004) The heat shock protein 70 cochaperone hip enhances functional maturation of glucocorticoid receptor. Mol. Endocrinol. 18: 1620–1630
Picard D., Khursheed B., Garabedian M. J. Fortin M. G., Lindquist S. and Yamamoto K. R. (1990) Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348: 166–168
Nicolet C. and Craig E. (1989) Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 3638–3646
Smith D. F., Sullivan W. P., Marion T. N., Zaitsu K., Madden B., McCormick, D. J. et al. (1993) Identification of a 60-Kilodalton Stress-Related Protein, p60, which interacts with hsp90 and hsp70. Mol. Cell. Biol. 13: 869–876
Scheufler C., Brinker A., Bourenkov G., Pegoraro S., Moroder L., Bartunik H., et al. (2000) Struture of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70–Hsp90 multichaperone machine. Cell 101: 199–210
Odunuga O. O., Hornby J. A., Bies C., Zimmermann R., Pugh, D. J. and Blatch G. L. (2003) Tetratricopeptide repeat motif-mediated Hsc70-mSTI1 interaction. Molecular characterization of the critical contacts for successful binding and specificity. J. Biol. Chem. 278: 6896–6904
Morishima Y., Kanelakis K. C., Silverstein A. M., Dittmar K. D., Estrada L. and Pratt W. B. (2000) The Hsp organizer protein Hop enhances the rate of but is not essential for glucocorticoid receptor folding by the multiprotein Hsp90-based chaperone system. J. Biol. Chem. 275: 6894–6900
Wegele H., Haslbeck M., Reinstein J. and Buchner J. (2003) Sti1 is a novel activator of the Ssa proteins. J. Biol. Chem. 278: 25970–25976
Brychzy A., Rein T., Winklhofer K. F., Hartl F. U., Young J. C. and Obermann W. M. (2003) Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. EMBO J. 22: 3613–3623
Ballinger C. A., Connell P., Wu Y., Hu Z., Thompson L. J., Yin, L. Y. et al. (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell. Biol. 19: 4535–4545
Nikolay R., Wiederkehr T., Rist W., Kramer G., Mayer M. P. and Bukau B. (2004) Dimerization of the human E3 ligase CHIP via a coiled-coil domain is essential for its activity. J. Biol. Chem. 279: 2673–2678
Höhfeld J., Cyr D. M. and Patterson C. (2001) From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep. 2: 885–890
Connell P., Ballinger C. A., Jiang J., Wu Y., Thompson L. J., Hohfeld J. et al. (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat. Cell. Biol. 3: 93–96
Jiang J., Cyr D., Babbitt R. W., Sessa W. C. and Patterson C. (2003) Chaperone-dependent regulation of endothelial nitricoxide synthase intracellular trafficking by the co-chaperone/ubiquitin ligase CHIP. J. Biol. Chem. 278: 49332–49341
Dai Q., Zhang C., Wu Y., McDonough H., Whaley R. A., Godfrey V. et al. (2003) CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J. 22: 5446–5458
Pellecchia M., Szyperski T., Wall D., Georgopoulos C. and Wüthrich K. (1996) NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. J. Mol. Biol. 260: 236–250