Hox, homology, and parsimony: An organismal perspective
Tài liệu tham khảo
Adami, 2002, What is complexity, BioEssays, 24, 1085, 10.1002/bies.10192
Akam, 1995, Hox genes and the evolution of diverse body plans, Philos. Trans. R. Soc. Lond. B, 349, 313, 10.1098/rstb.1995.0119
Albertin, 2015, The octopus genome and the evolution of cephalopod neural and morphological novelties, Nature, 524, 220, 10.1038/nature14668
Amores, 1998, Genome duplications in vertebrate evolution: evidence from zebrafish Hox clusters, Science, 282, 1711, 10.1126/science.282.5394.1711
Bell, 1997, Size and complexity among multicellular organisms, Biol. J. Linn. Soc., 60, 345, 10.1111/j.1095-8312.1997.tb01500.x
Bi, 2021, Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes, Cell, 184, 1377, 10.1016/j.cell.2021.01.046
Borowiec, 2015, Extracting phylogenetic signal and accounting for bias in whole-genome data sets supports the Ctenophora as sister to remaining Metazoa, BMC Genom., 16, 987, 10.1186/s12864-015-2146-4
Boulet, 2004, M.R. multiple roles of Hoxa11 and Hoxd11 in the formation of the mammalian forelimb zeugopod, Development, 131, 299, 10.1242/dev.00936
Brauchle, 2018, Xenacoelomorpha survey reveals that all 11 animal homeobox gene classes were present in the first bilaterians, Genome Biol. Evol., 10, 2205, 10.1093/gbe/evy170
Brooke, 1998, The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster, Nature, 392, 920, 10.1038/31933
Brower, 1996, Three steps of homology assessment, Cladistics, 12, 265
Burke, 1995, Hox genes and the evolution of vertebrate axial morphology, Development, 121, 333, 10.1242/dev.121.2.333
Callaerts, 1997, PAX6 in development and evolution, Annu. Rev. Neurosci., 20, 483, 10.1146/annurev.neuro.20.1.483
Camin, 1965, A method for deducing branching sequences in phylogeny, Evolution, 19, 311, 10.2307/2406441
Carroll, 1995, Homeotic genes and the evolution of arthropods and chordates, Nature, 376, 479, 10.1038/376479a0
Cavalli-Sforza, 1967, Phylogenetic analysis. Models and estimation procedures, Am. J. Hum. Genet., 19, 233
Cook, 2004, The Hox gene complement of acoel flatworms, a basal bilaterian clade, Evol. Dev., 6, 154, 10.1111/j.1525-142X.2004.04020.x
Darwin, 1859
Davis, 1995, Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11, Nature, 375, 791, 10.1038/375791a0
Degnan, 1995, A hox/hom homeobox gene in sponges, Gene, 155, 175, 10.1016/0378-1119(94)00908-B
Delattre, 2001, Polymorphism and evolution of vulval precursor cell lineages within two nematode genera, Caenorhabditis and Oscheius, Curr. Biol., 11, 631, 10.1016/S0960-9822(01)00202-0
DuBuc, 2019, “Dorsal–ventral” genes are part of an ancient axial patterning system: evidence from Trichoplax adhaerens (Placozoa), Mol. Biol. Evol., 36, 966, 10.1093/molbev/msz025
Felix, 2007, Cryptic quantitative evolution of the vulva intercellular signaling network in Caenorhabditis, Curr. Biol., 17, 103, 10.1016/j.cub.2006.12.024
Feng, 2022, Maintenance of neurotransmitter identity by Hox proteins through a homeostatic mechanism, bioRxiv
Ferrier, 2016, The origin of the Hox/ParaHox genes, the Ghost Locus hypothesis and the complexity of the first animal, Brief. Funct. Genom., 15, 333, 10.1093/bfgp/elv056
Feuda, 2017, Improved modeling of compositional heterogeneity supports sponges as sister to all other animals, Curr. Biol., 27, 3864, 10.1016/j.cub.2017.11.008
Finlay, 2009, Can biological complexity be rationalized, Bioscience, 59, 333, 10.1525/bio.2009.59.4.11
Fortunato, 2014, Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes, Nature, 514, 620, 10.1038/nature13881
Fritzsch, 2008, PCR survey of Xenoturbella bocki Hox genes, J. Exp. Zool. B Mol. Dev. Evol., 310, 278, 10.1002/jez.b.21208
Garcia-Fernàndez, 2005, Hox, ParaHox, ProtoHox: facts and guesses, Heredity (Edinb), 94, 145, 10.1038/sj.hdy.6800621
Garcia-Fernàndez, 2005, The genesis and evolution of homeobox gene clusters, Nat. Rev. Genet., 6, 881, 10.1038/nrg1723
Garcia-Fernàndez, 1994, Archetypal organization of the amphioxus Hox gene cluster, Nature, 370, 563, 10.1038/370563a0
Gaunt, 2015, The significance of Hox gene collinearity, Int. J. Dev. Biol., 59, 159, 10.1387/ijdb.150223sg
Gehring, 1996, The master control gene for morphogenesis and evolution of the eye, Genes Cells, 1, 11, 10.1046/j.1365-2443.1996.11011.x
Glassford, 2015, Co-option of an ancestral Hox-regulated network underlies a recently evolved morphological novelty, Dev. Cell, 34, 520, 10.1016/j.devcel.2015.08.005
Haag, 2021, Developmental system drift, 99
Hagolani, 2021, On the evolution and development of morphological complexity: a view from gene regulatory networks, 17
Halanych, 2016, Miscues misplace sponges, Proc. Natl. Acad. Sci. USA, 113, E946, 10.1073/pnas.1525332113
Halder, 1995, New perspectives on eye evolution, Curr. Opin. Genet. Dev., 5, 602, 10.1016/0959-437X(95)80029-8
Halder, 1995, Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila, Science, 267, 1788, 10.1126/science.7892602
Hawkins, 2021, Latent developmental potential to form limb-like skeletal structures in zebrafish, 184, 899
Hejnol, 2015, Acoelomorpha and Xenoturbellida, 203
Hombría, 2021, Anterior Hox genes and the process of cephalization, Front. Cell Dev. Biol., 9, 10.3389/fcell.2021.718175
Hughes, 2002, Hox genes and the evolution of the arthropod body plan, Evol. Dev., 4, 459, 10.1046/j.1525-142X.2002.02034.x
Jager, 2006, Homology of arthropod anterior appendages revealed by Hox gene expression in a sea spider, Nature, 441, 506, 10.1038/nature04591
Jakob, 2004, The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary, Dev. Genes Evol., 214, 170, 10.1007/s00427-004-0390-8
Jarvis Alberstat, 2022, Combinatorial interactions of Hox genes establish appendage diversity of the amphipod crustacean Parhyale hawaiensis, bioRxiv
Jimenez-Guri, 2006, Hox and ParaHox genes in Nemertodermatida, a basal bilaterian clade, Int. J. Dev. Biol., 50, 675, 10.1387/ijdb.062167ej
Juravel, 2021, Improved resolution of recalcitrant nodes in the animal phylogeny through the analysis of genome gene content and morphology, bioRxiv
Kaufman, 1990, Molecular and genetic organization of the Antennapedia gene complex of Drosophila melanogaster, 309, 10.1016/S0065-2660(08)60029-2
Kenny, 2016, Ancestral whole-genome duplication in the marine chelicerate horseshoe crabs, Heredity, 116, 190, 10.1038/hdy.2015.89
Larroux, 2007, The NK homeobox gene cluster predates the origin of Hox genes, Curr. Biol., 17, 706, 10.1016/j.cub.2007.03.008
Laumer, 2018, Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias, ELife, 7, 10.7554/eLife.36278
Laumer, 2019, Revisiting metazoan phylogeny with genomic sampling of all phyla, Proc. R. Soc. B Biol. Sci., 286
Lee, 2003, Cephalopod Hox genes and the origin of morphological novelties, Nature, 424, 1061, 10.1038/nature01872
Lemons, 2006, Genomic evolution of Hox gene clusters, Science, 313, 1918, 10.1126/science.1132040
Lewis, 1978, A gene complex controlling segmentation in Drosophila, Nature, 276, 565, 10.1038/276565a0
Liu, 2020, Giant African snail genomes provide insights into molluscan whole-genome duplication and aquatic–terrestrial transition, Mol. Ecol. Resour., 21, 478, 10.1111/1755-0998.13261
Loker, 2021, Cell-type-specific Hox regulatory strategies orchestrate tissue identity, Curr. Biol., 31, 4246, 10.1016/j.cub.2021.07.030
Mallo, 2010, Hox genes and regional patterning of the vertebrate body plan, Dev. Biol., 344, 7, 10.1016/j.ydbio.2010.04.024
Mann, 2000, The developmental and molecular biology of genes that subdivide the body of Drosophila, Annu. Rev. Cell Dev. Biol., 16, 243, 10.1146/annurev.cellbio.16.1.243
Martin, 2016, CRISPR/Cas9 mutagenesis reveals versatile roles of Hox genes in crustacean limb specification and evolution, Curr. Biol., 26, 14, 10.1016/j.cub.2015.11.021
McGinnis, 1992, Homeobox genes and axial patterning, Cell, 68, 283, 10.1016/0092-8674(92)90471-N
McQueen, 2020, Establishing the pattern of the vertebrate limb, Development, 147, dev177956, 10.1242/dev.177956
Moghadam, 2005, Evolution of Hox clusters in Salmonidae: a comparative analysis between Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss), J. Mol. Evol., 61, 636, 10.1007/s00239-004-0338-7
Moghadam, 2005, Evidence for Hox gene duplication in rainbow trout (Oncorhynchus mykiss): a tetraploid model species, J. Mol. Evol., 61, 804, 10.1007/s00239-004-0230-5
Monteiro, 2006, Hox genes are not always Colinear, Int. J. Biol. Sci., 2, 95, 10.7150/ijbs.2.95
Moreau, 2019, Timed collinear activation of Hox genes during gastrulation controls the avian forelimb position, Curr. Biol., 29, 35, 10.1016/j.cub.2018.11.009
Moreno, 2009, Tracking the origins of the bilaterian Hox patterning system: insights from the acoel flatworm Symsagittifera roscoffensis, Evol. Dev., 11, 574, 10.1111/j.1525-142X.2009.00363.x
Moroz, 2014, The ctenophore genome and the evolutionary origins of neural systems, Nature, 510, 109, 10.1038/nature13400
Neves, 2009, Cycliophoran dwarf males break the rule: high complexity with low cell numbers, Biol. Bull., 217, 2, 10.1086/BBLv217n1p2
Nielsen, 2003, Patterns of gene expression: homology or homocracy, Dev. Genes Evol., 213, 149, 10.1007/s00427-003-0301-4
Owen, 1843
Pace, 2016, Composition and genomic organization of arthropod Hox clusters, Evodevo, 7, 1, 10.1186/s13227-016-0048-4
Papageorgiou, 2016, Hox gene collinearity: from A-P patterning to radially symmetric animals, Curr. Genom., 17, 444, 10.2174/1389202917666160616082436
Parker, 2016, The vertebrate Hox gene regulatory network for hindbrain segmentation: evolution and diversification: Coupling of a Hox gene regulatory network to hindbrain segmentation is an ancient trait originating at the base of vertebrates, Bioessays, 38, 526, 10.1002/bies.201600010
Pastrana, 2019, Sponges lack ParaHox genes, Genome Biol. Evol., 11, 1250, 10.1093/gbe/evz052
Peter, 2015
Philippidou, 2013, Hox genes: choreographers in neural development, architects of circuit organization, Neuron, 80, 12, 10.1016/j.neuron.2013.09.020
Pick, 2012, Hox gene evolution: multiple mechanisms contributingto evolutionary novelties, Ann. N. Y. Acad. Sci., 1256, 15, 10.1111/j.1749-6632.2011.06385.x
de Pinna, 1991, Concepts and tests of homology in the cladistic paradigm, Cladistics, 7, 367, 10.1111/j.1096-0031.1991.tb00045.x
Pisani, 2015, Genomic data do not support comb jellies as the sister group to all other animals, Proc. Natl. Acad. Sci. U. S. A, 112, 15402, 10.1073/pnas.1518127112
Ramos, 2012, Ghost loci imply Hox and ParaHox existence in the last common ancestor of animals, Curr. Biol., 22, 1951, 10.1016/j.cub.2012.08.023
Redmond, 2021, Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding, Nat. Commun., 12, 1783, 10.1038/s41467-021-22074-7
Robinson, 2011, Different paths, same structure: “developmental systems drift” at work, PLoS Biol., 9, 10.1371/journal.pbio.1001113
Ryan, 2010, NISC comparative sequencing program, the homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa, EvoDevo, 1, 10.1186/2041-9139-1-9
Salamanca-Díaz, 2021, Non-collinear Hox gene expression in bivalves and the evolution of morphological novelties in mollusks, Sci. Rep., 11, 3575, 10.1038/s41598-021-82122-6
Samadi, 2009, Involvement of Hox genes in shell morphogenesis in the encapsulated development of a top shell gastropod (Gibbula varia L.), Dev. Genes Evol., 219, 523, 10.1007/s00427-009-0308-6
Samadi, 2010, Expression of Hox genes during the larval development of the snail, Gibbula varia (L.)-further evidence of non-colinearity in molluscs, Dev. Genes Evol., 220, 161, 10.1007/s00427-010-0338-0
Schiemann, 2017, Clustered brachiopod Hox genes are not expressed collinearly and are associated with lophotrochozoan novelties, Proc. Natl. Acad. Sci., 114, E1913, 10.1073/pnas.1614501114
Schierwater, 2015, Placozoa, 107
Schierwater, 2009, Placozoa and the evolution of Metazoa and intrasomatic cell differentiation, Int. J. Biochem. Cell Biol., 41, 370, 10.1016/j.biocel.2008.09.023
Schiffer, 2022, The slow evolving genome of the xenacoelomorph worm Xenoturbella bocki, bioRxiv
Schwager, 2017, The house spider genome reveals an ancient whole-genome duplication during arachnid evolution, BMC Biol., 15, 62, 10.1186/s12915-017-0399-x
Seo, 2004, Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica, Nature, 431, 67, 10.1038/nature02709
Serano, 2016, Comprehensive analysis of Hox gene expression in the amphipod crustacean Parhyale hawaiensis, Dev. Biol., 409, 297, 10.1016/j.ydbio.2015.10.029
Sharma, 2014, Hox gene duplications correlate with posterior heteronomy in scorpions, Proc. R. Soc. B, 281, 20140661, 10.1098/rspb.2014.0661
Simakov, 2013, Insights into bilaterian evolution from three spiralian genomes, Nature, 493, 526, 10.1038/nature11696
Singh, 2022, Diversification and functional evolution of HOX proteins, Front. Cell Dev. Biol., 10, 10.3389/fcell.2022.798812
Sober, 1988
Sommer, 1997, Evolutionary changes of developmental mechanisms in the absence of cell lineage alterations during vulva formation in the Diplogastridae (Nematoda), Development, 124, 10.1242/dev.124.1.243
Sommer, 2012, Evolution of regulatory networks: nematode vulva induction as an example of developmental systems drift, 79–91, 4
Svensson, 2004, Homology and homocracy revisited: gene expression patterns and hypotheses of homology, Dev. Genes Evol., 214, 418, 10.1007/s00427-004-0416-2
Thomas-Chollier, 2016, Origin of metazoan patterning systems and the role of ANTP-class homeobox genes, eLS Evol. Divers. Life
True, 2001, Developmental system drift and flexibility in evolutionary trajectories, Evol. Dev., 3, 109, 10.1046/j.1525-142x.2001.003002109.x
Wagner, 2007, The developmental genetics of homology, Nat. Rev. Genet., 8, 473, 10.1038/nrg2099
Wagner, 2015, Homology in the age of developmental genomics, 25
Wagner, 2003, Hox cluster duplications and the opportunity for evolutionary novelties, Proc. Natl. Acad. Sci. U. S. A., 100, 14603, 10.1073/pnas.2536656100
Wang, 2011, Antagonism of LIN-17/Frizzled and LIN-18/Ryk in nematode vulva induction reveals evolutionary alterations in core developmental pathways, PLoS Biol., 9, 10.1371/journal.pbio.1001110
Wanninger, 2015, Morphology is dead – long livemorphology! Integrating MorphoEvoDevo into molecular EvoDevo and phylogenomics, Front. Ecol. Evol., 3, 54, 10.3389/fevo.2015.00054
Wanninger, 2015, Mollusca, 103
Wanninger, 2019, The evolution of molluscs, Biol. Rev., 94, 102, 10.1111/brv.12439
Whelan, 2015, Error, signal, and the placement of Ctenophora sister to all other animals, Proc. Natl. Acad. Sci. U. S. A., 112, 5773, 10.1073/pnas.1503453112
Whelan, 2017, Ctenophore relationships and their placement as the sister group to all other animals, Nat. Ecol. Evol., 1, 1737, 10.1038/s41559-017-0331-3
Wollesen, 2017, Brain regionalization genes are co-opted into shell field patterning in Mollusca, Sci. Rep., 7, 5486, 10.1038/s41598-017-05605-5
Zhao, 2021, Whole-genome microsynteny-based phylogeny of angiosperms, 12, 3498