How useful is SBF in predicting in vivo bone bioactivity?

Biomaterials - Tập 27 Số 15 - Trang 2907-2915 - 2006
Tadashi Kokubo1, Hiroaki Takadama1
1Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hench, 1972, Bonding mechanisms at the interface of ceramics prosthetic materials, J Biomed Mater Res, 2, 117

Jarcho, 1977, Tissue, cellular and subcellular events at a bone–ceramic hydroxyapatite interface, J Bioeng, 179

Rejda, 1977, Tricalcium phosphate as a bone substitute, J Bioeng, 1, 93

Legeros, 2003, Biphasic calcium phosphate bioceramics: preparation, properties and applications, J Mater Sci Mater Med, 14, 201, 10.1023/A:1022872421333

Kokubo, 1982, Apatite- and wollastonite-containing glass-ceramic for prosthetic application, Bull Inst Chem Res Kyoto Univ, 60, 260

Kokubo, 1991, Bioactive glass ceramics: properties and applications, Biomaterials, 12, 155, 10.1016/0142-9612(91)90194-F

Ogino, 1980, Compositional dependence of the formation of calcium phosphate films on bioglass, J Biomed Mater Res, 14, 55, 10.1002/jbm.820140107

Kitsugi, 1987, SEM-EPMA observation of three types of apatite-containing glass ceramics implanted in bone: the variance of a Ca, P-rich layer, J Biomed Mater Res, 21, 1255, 10.1002/jbm.820211008

Kokubo, 1990, Surface structure of bioactive glass-ceramic A–W implanted into sheep and human vertebra, vol. 2, 113

Kokubo, 1990, Solutions able to reproduce in vivo surface-structure change in bioactive glass-ceramic A–W, J Biomed Mater Res, 24, 721, 10.1002/jbm.820240607

Kokubo, 1990, Ca, P-rich layer formed on high-strength bioactive glass-ceramic A–W, J Biomed Mater Res, 24, 331, 10.1002/jbm.820240306

Filgueiras, 1993, Solution effects on the surface reactions of a bioactive glass, J Biomed Mater Res, 27, 445, 10.1002/jbm.820270405

Ohtsuki, 1995, Transmission electron microscopic observation of glass-ceramic A–W and apatite layer formed on its surface in a simulated body fluid, J Ceram Soc Japan, 103, 449, 10.2109/jcersj.103.449

Kitsugi, 1989, The bonding of glass ceramics to bone, Int Orthop, 13, 199, 10.1007/BF00268048

Gamble, 1967

Ohtsuki, 1991, Apatite formation on the surface of Ceravital-type glass-ceramic in the body, J Biomed Mater Res, 25, 1363, 10.1002/jbm.820251105

Neuman, 1958

Cho, 1995, Dependence of apatite formation on silica gel on its structure: effect of heat treatment, J Am Ceram Soc, 78, 1769, 10.1111/j.1151-2916.1995.tb08887.x

Oyane, 2003, Preparation and assessment of revised simulated body fluids, J Biomed Mater Res, 65A, 188, 10.1002/jbm.a.10482

Oyane, 2003, Formation and growth of clusters in conventional and new kinds of simulated body fluids, J Biomed Mater Res, 64A, 339, 10.1002/jbm.a.10426

Takadama, 2004, Round-robin test of SBF for in vitro measurement of apatite-forming ability of synthetic materials, Phos Res Bull, 17, 119, 10.3363/prb1992.17.0_119

Anderson, 1991, On the bioactivity of silicate glass, J Non-Cryst Solids, 129, 145, 10.1016/0022-3093(91)90090-S

Neo, 1992, A comparative study of ultrastructures of the interfaces between four kinds of surface-active ceramic and bone, J Biomed Mater Res, 26, 1419, 10.1002/jbm.820261103

Höland, 1985, Interface reaction between machinable bioactive glass-ceramics and bone, J Biomed Mater Res, 19, 303, 10.1002/jbm.820190311

Kokubo, 1988, Apatite formation on bioactive ceramics in body environment

Kim, 2004, The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment, J R Soc Interface, 1, 17, 10.1098/rsif.2004.0003

Chan H, Mijares D, Ricci JL. In vitro dissolution of calcium sulfate: evidence of bioactivity. Transactions of the seventh world biomaterials congress,. 2004. p. 627.

Judasz, 2003, Apatite-forming ability of glass-ceramic apatite-wollastonite-polyethylene composites: effect of filler content, J Mater Sci: Mater Med, 14, 489, 10.1023/A:1023499728588

Judasz JA, Ishii S, Best SM, Kawashita M, Neo M, Kokubo T, et al. Bone-bonding ability of glass-ceramic apatite-wollastonite-polyethylene composites. Transactions of the seventh world biomaterials congress, 2004. p. 665.

Ohtsuki, 1991, Bone-bonding mechanism of sintered β-3CaO-P2O5, Phos Res Bull, 1, 191

Ohtsuki C, Aoki Y, Kokubo T, Fujita Y, Kotani S, Yamamuro T. Bioactivity of limestone and abalone shell. Transactions of the 11th annual meeting of Japanese Society for Biomaterials, 1989. p. 12.

Kotani, 1991, Bone bonding mechanism of β-tricalcium phosphate, J Biomed Mater Res, 25, 1303, 10.1002/jbm.820251010

Neo, 1993, Apatite formation of three kinds of bioactive materials at early stage in vivo: a comparative study by transmission electron microscopy, J Biomed Mater Res, 27, 999, 10.1002/jbm.820270805

Fujita, 1991, The bonding behavior of calcite to bone, J Biomed Mater Res, 25, 991, 10.1002/jbm.820250806

Fujita Y, Yamamuro T, Nakamura T, Kotani S, Kokubo T, Ohtsuki C. The bonding behavior of limestone and abalone shell to bone. Transactions of the 11th annual meeting of Japanese Society for Biomaterials, 1989. p. 3.

Kim, 1995, Bioactivity of Na2O–CaO–SiO2 glasses, J Am Ceram Soc, 78, 2405, 10.1111/j.1151-2916.1995.tb08677.x

Fujibayashi, 2003, A comparative study between in vivo bone growth and in vitro apatite formation on Na2O–CaO–SiO2 glasses, Biomaterials, 24, 1349, 10.1016/S0142-9612(02)00511-2

Oonishi, 2000, Quantitative comparison of bone growth behavior in granules of Bioglass(R), A–W glass-ceramic and hydroxyapatite, J Biomed Mater Res, 51, 37, 10.1002/(SICI)1097-4636(200007)51:1<37::AID-JBM6>3.0.CO;2-T

Ohtsuki, 1992, Mechanism of apatite formation on CaO–SiO2 P2O5 glasses in a simulated body fluid, J Non-Cryst Solids, 143, 84, 10.1016/S0022-3093(05)80556-3

Ebisawa, 1990, Bioactivity of CaO·SiO2-based glasses: in vitro evaluation, J Mater Sci Mater Med, 1, 239, 10.1007/BF00701083

Ohura, 1991, Bone-bonding ability of P2O5-free CaO–SiO2 glasses, J Biomed Mater Res, 25, 357, 10.1002/jbm.820250307

Ohura, 1992, Bioactivity of CaO·SiO2 glasses added with various ions, J Mater Sci Mater Med, 3, 95, 10.1007/BF00705275

Ebisawa, 1997, Bioactivity of ferrimagnetic glass-ceramics in the system FeO–Fe2O3–CaO–SiO2, Biomaterials, 18, 1277, 10.1016/S0142-9612(97)00067-7

Ohura, 1991, A heat-generating bioactive glass-ceramic for hyperthermia, J Appl Biomater, 2, 153, 10.1002/jab.770020303

Ikenaga, 1993, Localized hyperthermic treatment of experimental bone tumors with ferromagnetic ceramics, J Orthop Res, 11, 849, 10.1002/jor.1100110611

Li, 1992, Apatite formation induced on silica gel in a simulated body fluid, J Am Ceram Soc, 75, 2094, 10.1111/j.1151-2916.1992.tb04470.x

Li, 1994, A role of hydrated silica, titania and alumina in forming biologically active bone-like apatite on implant, J Biomed Mater Res, 28, 7, 10.1002/jbm.820280103

Uchida, 2001, Bonelike apatite formation induced on zirconia gel in simulated body fluid and its modified solutions, J Am Ceram Soc, 84, 2041, 10.1111/j.1151-2916.2001.tb00955.x

Miyazaki, 2001, Apatite-forming ability of niobium oxide gels in a simulated body fluid, J Ceram Soc Japan, 109, 929, 10.2109/jcersj.109.1275_929

Miyazaki, 2001, Induction and acceleration of bonelike apatite formation on tantalum oxide gel in simulated body fluid, J Sol–gel Sci Technol, 21, 83, 10.1023/A:1011265701447

Kim, 1996, Preparation of bioactive Ti and its alloys via simple chemical surface treatment, J Biomed Mater Res, 32, 409, 10.1002/(SICI)1097-4636(199611)32:3<409::AID-JBM14>3.0.CO;2-B

Miyazaki, 2000, Bioactive tantalum metal prepared by NaOH treatment, J Biomed Mater Res, 50, 35, 10.1002/(SICI)1097-4636(200004)50:1<35::AID-JBM6>3.0.CO;2-8

Takadama, 2001, TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid, J Biomed Mater Res, 57, 441, 10.1002/1097-4636(20011205)57:3<441::AID-JBM1187>3.0.CO;2-B

Nishiguchi, 2003, Biology of alkali- and heat-treated titanium implants, J Biomed Mater Res, 67A, 28, 10.1002/jbm.a.10540

Kato, 2000, Bonding of alkali- and heat-treated tantalum implant to bone, J Biomed Mater Res (Appl Biomater), 53, 28, 10.1002/(SICI)1097-4636(2000)53:1<28::AID-JBM4>3.0.CO;2-F