Cách sử dụng độ chính xác hỗn hợp trong các mô hình đại dương: khám phá khả năng giảm độ chính xác số trong NEMO 4.0 và ROMS 3.6
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. a
Baboulin, M., Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Langou, J., Luszczek, P., and Tomov, S.: Accelerating scientific computations with mixed precision algorithms, Comput. Phys. Commun., 180, 2526–2533, https://doi.org/10.1016/j.cpc.2008.11.005, 2009. a, b, c
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a, b
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., and Courchamp, F.: Impacts of climate change on the future of biodiversity, Ecol. Lett., 15, 365–377, https://doi.org/10.1111/j.1461-0248.2011.01736.x, 2012. a
Dawson, A. and Dueben, P.: aopp-pred/rpe: v5.0.0 (Version v5.0.0), Zenodo, https://doi.org/10.5281/zenodo.154483, 2016. a
Dawson, A. and Düben, P. D.: rpe v5: an emulator for reduced floating-point precision in large numerical simulations, Geosci. Model Dev., 10, 2221–2230, https://doi.org/10.5194/gmd-10-2221-2017, 2017. a, b, c
Dennis, J. M. and Loft, R. D.: Refactoring Scientific Applications for Massive Parallelism, in: Numerical Techniques for Global Atmospheric Models, 80, 539–556, https://doi.org/10.1007/978-3-642-11640-7_16, 2011. a
Düben, P. D., McNamara, H., and Palmer, T. N.: The use of imprecise processing to improve accuracy in weather & climate prediction, J. Comput. Phys., 271, 2–18, https://doi.org/10.1016/j.jcp.2013.10.042, 2014. a
Düben, P. D., Subramanian, A., Dawson, A., and Palmer, T. N.: A study of reduced numerical precision to make superparameterization more competitive using a hardware emulator in the OpenIFS model, J. Adv. Model. Earth Sy., 9, 566–584, https://doi.org/10.1002/2016MS000862, 2017. a
Düben, P. D., Subramanian, A., Dawson, A., and Palmer, T. N.: A study of reduced numerical precision to make superparameterization more competitive using a hardware emulator in the OpenIFS model, J. Adv. Model. Earth Sy., 9, 566–584, https://doi.org/10.1002/2016MS000862, 2017. a
Graillat, S., Fabienne, J., Picot, R., and Lathuili, B.: PROMISE: floating-point precision tuning with stochastic arithmetic, 17th international symposium on Scientific Computing, Computer Arithmetic and Verified Numerics (SCAN 2016), UPPSALA, Sweden, 98–99, September 2016. a
Haidar, A., Tomov, S., Dongarra, J., and Higham, N. J.: Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers, in: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, SC'18 (Dallas, TX), IEEE Press, Piscataway, NJ, USA, 47:1–47:11, available at: http://dl.acm.org/citation.cfm?id=3291656.3291719 (last access: July 2019), 2018. a
Hegerl, G. and Zwiers, F.: Use of models in detection and attribution of climate change, Wires Clim. Change, 2, 570–591, https://doi.org/10.1002/wcc.121, 2011. a
Kniveton, D. R., Smith, C. D., and Black, R.: Emerging migration flows in a changing climate in dryland Africa, Nat. Clim. Change, 2, 444–447, https://doi.org/10.1038/nclimate1447, 2012. a
Lam, M. O., De Supinksi, B. R., Legendre, M. P., and Hollingsworth, J. K.: Automatically adapting programs for mixed-precision floating-point computation, Proceedings – 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, SCC 2012, 1423–1424, https://doi.org/10.1109/SC.Companion.2012.231, 2012. a
Madec, G.: NEMO ocean engine, Note du Pole de modelisatio 1288–1619, https://www.nemo-ocean.eu/wp-content/uploads/Doc_OPA8.1.pdf (last access: July 2019), 2008. a
Moore, A., Arango, H., Broquet, G., S. Powell, B., Weaver, A., and Zavala-Garay, J.: The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems Part I – System overview and formulation, Prog. Oceanogr., 91, 34–49, https://doi.org/10.1016/j.pocean.2011.05.004, 2011. a
Oreskes, N., Stainforth, D. A., and Smith, L. A.: Adaptation to Global Warming: Do Climate Models Tell Us What We Need to Know?, Philos. Sci., 77, 1012–1028, https://doi.org/10.1086/657428, 2010. a
Palmer, T., Shutts, G., Hagedorn, R., Doblas-Reyes, F., Jung, T., and Leutbecher, M.: Representing model uncertainty in wheather and climate prediction, Annu. Rev. Earth Pl. Sc., 33, 163–193, https://doi.org/10.1146/annurev.earth.33.092203.122552, 2005. a
Randall, D., Wood, R., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., Stouffer, R., Sumi, A., and Taylor, K.: Climate Models and Their Evaluation, in: IPCC, 2007: Climate Change 2007: the physical science basis. contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 323, 589–662, https://doi.org/10.1016/j.cub.2007.06.045, 2007. a
Rousset, C., Vancoppenolle, M., Madec, G., Fichefet, T., Flavoni, S., Barthélemy, A., Benshila, R., Chanut, J., Levy, C., Masson, S., and Vivier, F.: The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities, Geosci. Model Dev., 8, 2991–3005, https://doi.org/10.5194/gmd-8-2991-2015, 2015. a
The ROMS/TOMS Group: ROMS, available at: http://www.myroms.org/, last access: July 2019. a
Thornes, T.: Can reducing precision improve accuracy in weather and climate models?, Weather, 71, 147–150, https://doi.org/10.1002/wea.2732, 2016. a
Tintó Prims, O.: AutoRPE, available at: https://earth.bsc.es/gitlab/otinto/AutoRPE, last access: July 2019. a, b
Tintó Prims, O., Castrillo, M., Acosta, M., Mula-Valls, O., Sanchez Lorente, A., Serradell, K., Cortés, A., and Doblas-Reyes, F.: Finding, analysing and solving MPI communication bottlenecks in Earth System models, J. Comput. Sci., https://doi.org/10.1016/j.jocs.2018.04.015, in press, 2018. a
Váňa, F., Düben, P., Lang, S., Palmer, T., Leutbecher, M., Salmond, D., and Carver, G.: Single Precision in Weather Forecasting Models: An Evaluation with the IFS, Mon. Weather Rev., 145, 495–502, https://doi.org/10.1175/MWR-D-16-0228.1, 2017. a