Cách tăng tốc phát hiện ô nhiễm vi sinh hiếu khí bằng phương pháp vi calorimetry đồng nhiệt

Journal of Thermal Analysis and Calorimetry - Tập 142 - Trang 1933-1949 - 2020
Christian Fricke1, Hauke Harms1, Thomas Maskow1
1Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany

Tóm tắt

Microcalorimetry đồng nhiệt (IMC) được coi là một công cụ chẩn đoán hứa hẹn cho việc phát hiện nhanh ô nhiễm vi khuẩn trong các ma trận khác nhau. Dựa trên thời gian phát hiện tham chiếu xác định bởi việc kiểm tra trực quan sự phát triển của vi khuẩn trên môi trường rắn, chúng tôi đã điều tra vi khuẩn Pseudomonas putida mt-2 KT2440 sinh trưởng hiếu khí nghiêm ngặt trong hệ thống ống ampoule tĩnh 4 mL trên môi trường rắn và lỏng bằng IMC nhằm đánh giá ba lựa chọn chính để giảm thời gian phát hiện ô nhiễm vi khuẩn. Thứ nhất, việc chuẩn bị mẫu (ví dụ như lọc màng) dẫn đến số lượng vi khuẩn tăng lên trong ống đo và do đó giảm thời gian phát hiện. Thứ hai, lượng chất nền và oxy đã được điều tra bằng cách thay đổi thể tích chứa của môi trường trong ống calorimetric. Tại đây, chúng tôi đã chỉ ra cách các đặc điểm sinh lý học như khuếch tán chất nền và oxy đã xác định hình dạng của các tín hiệu dòng nhiệt và do đó thời gian phát hiện. Cuối cùng, khung kỹ thuật xác định độ nhạy của thiết bị IMC. Chúng tôi đã xem xét tác động của bốn giá trị ngưỡng phát hiện khác nhau (2, 10, 50 và 100 µW) đến thời gian phát hiện theo hàm số lượng ban đầu của vi khuẩn hiện diện trong ống và thể tích chứa.

Từ khóa

#microcalorimetry #vi khuẩn #phát hiện nhanh #ô nhiễm vi sinh #Pseudomonas putida

Tài liệu tham khảo

Wadsö I, Goldberg RN. Standards in isothermal microcalorimetry (IUPAC Technical Report). Pure Appl Chem. 2001;73:1625–39. Gustafsson L. Microbiological calorimetry. Thermochim Acta. 1991;193:145–71. Ladbury JE, Chowdhry BZ. Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem Biol. 1996;3:791–801. Kemp RB. An historical review of developments in cellular microcalorimetry. Pure Appl Chem. 1993;65:1875–80. Wadsö L, Gómez GF. Isothermal calorimetry for biological applications in food science and technology. Food Control. 2009;20(10):956–61. Bruylants G, Wouters J, Michaux C. Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr Med Chem. 2005;12:2011–20. Ozawa T. Thermal analysis—review and prospect. Thermochim Acta. 2000;355:35–42. Wadsö I. Microcalorimetric techniques for characterization of living cellular systems. will there be any important practical applications? Thermochim Acta. 1995;269–270:337–50. Maskow T, Kemp R, Buchholz F, Schubert T, Kiesel B, Harms H. What heat is telling us about microbial conversions in nature and technology: from chip- to megacalorimetry. Microbiol Biotechnol. 2010;3:269–84. Lorinczy D. Thermal analysis in biological and medical applications. J Therm Anal Calorim. 2017;130:1263–80. Braissant O, Wirz D, Göpfert B, Daniels AU. Biomedical use of isothermal microcalorimeters. Sensors. 2010;10:9369–83. Lamprecht I. Calorimetry and thermodynamics of living systems. Thermochim Acta. 2003;405:1–13. Stenesh J. Introduction to metabolism biochemistry. Boston: Springer; 1998. p. 203–19. von Stockar U, Liu JS. Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochim Biophys Acta Bioenerg. 1999;1412:191–211. Maskow T, Wolf K, Kunze W, Enders S, Harms H. Rapid analysis of bacterial contamination of tap water using isothermal calorimetry. Thermochim Acta. 2012;543:273–80. Brueckner D, Krähenbühl S, Zuber U, Bonkat G, Braissant O. An alternative sterility assessment for parenteral drug products using isothermal microcalorimetry. J Appl Microbiol. 2017;123:773–9. Maskow T, Schubert T, Wolf A, Buchholz F, Regestein L, Buechs J, et al. Potentials and limitations of miniaturized calorimeters for bioprocess monitoring. Appl Microbiol and Biotechnol. 2011;92:55. Chen J, Li K, Liu C, Li M, Lv Y, Jia L, et al. Enhanced efficiency of thermoelectric generator by optimizing mechanical and electrical structures. Energies. 2017;10:1329. Trampuz A, Salzmann S, Antheaume J, Daniels AU. Microcalorimetry: a novel method for detection of microbial contamination in platelet products. Transfusion. 2007;47:1643–50. Boling EA, Blanchard GC, Russell WJ. Bacterial identification by microcalorimetry. Nature. 1973;241:472–3. Chang-Li X, Hou-Kuhan T, Zhau-Hua S, Song-Sheng Q, Yao-Ting L, Hai-Shui L. Microcalorimetric study of bacterial growth. Thermochim Acta. 1988;123:33–41. Bonkat G, Braissant O, Rieken M, Solokhina A, Widmer AF, Frei R, et al. Standardization of isothermal microcalorimetry in urinary tract infection detection by using artificial urine. World J Urol. 2013;31:553–7. Braissant O, Wirz D, Gopfert B, Daniels AU. “The heat is on”: rapid microcalorimetric detection of mycobacteria in culture. Tuberculosis. 2010;90:57–9. Koga K, Nishizawa YU, Matsumoto Y-I, Hara T, Takahashi K. Evaluation of the growth activity of escherichia coli and staphylococcus aureus colonies on solid medium using microbial calorimetry. Biocontrol Sci. 2004;9:21–8. Fricke C, Harms H, Maskow T. Rapid calorimetric detection of bacterial contamination: influence of the cultivation technique. Front Microbiol. 2019;10:1–12. Monod J. The growth of bacterial cultures. Annu Rev Microbiol. 1949;3:371–94. Saha K. The Earth’s atmosphere: its physics and dynamics. Berlin: Springer; 2008. Benson BB, Krause D Jr. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol Oceanogr. 1984;29:620–32. Hazan R, Que Y-A, Maura D, Rahme LG. A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC Microbiol. 2012;12:1–7. Hoffmann S, Walter S, Blume A-K, Fuchs S, Schmidt C, Scholz A, et al. High-throughput quantification of bacterial-cell interactions using virtual colony counts. Front Cell Infect Microbiol. 2018;8:1–10. Bonkat G, Bachmann A, Solokhina A, Widmer AF, Frei R, Gasser TC, et al. Growth of mycobacteria in urine determined by isothermal microcalorimetry: implications for urogenital tuberculosis and other mycobacterial infections. Urology. 2012;80:1163.e9-.e12. Gnaiger E, Kemp RB. Anaerobic metabolism in aerobic mammalian cells: information from the ratio of calorimetric heat flux and respirometric oxygen flux. Biochim Biophys Acta Bioenerg. 1990;1016:328–32. Bartram J, Cotruvo JA, Exner M, Fricker C, Glasmacher A. Heterotrophic plate counts and drinking-water safety. Geneva: World Health Organization; 2003. Braissant O, Wirz D, Göpfert B, Daniels AU. Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol Lett. 2010;303:1–8. Bäckman P, Bastos M, Hallén D, Lönnbro P, Wadsö I. Heat conduction calorimeters: time constants, sensitivity and fast titration experiments. J Biochem Biophys Methods. 1994;28:85–100. Wadsö I. Isothermal microcalorimetry near ambient temperature: an overview and discussion. Thermochim Acta. 1997;294:1–11. Lee W, Fon W, Axelrod BW, Roukes ML. High-sensitivity microfluidic calorimeters for biological and chemical applications. Proc Natl Acad Sci USA. 2009;106:15225–30. Rodríguez D, Daniels AU, Urrusti JL, Wirz D, Braissant O. Evaluation of a low-cost calorimetric approach for rapid detection of tuberculosis and other mycobacteria in culture. J Appl Microbiol. 2011;111:1016–24. Altwasser V, Patz RR, Lemke T, Paufler S, Maskow T. A simple method for the measurement of metabolic heat production rates during solid-state fermentations using ss-carotene production with Blakeslea trispora as a model system. Eng Life Sci. 2017;17:620–8. Braissant O, Theron G, Barnard M, Friedrich SO, Diacon AH, Bonkat G. Comparison of isothermal microcalorimetry and BACTEC MGIT960 for detection of the metabolic activity of Mycobacterium tuberculosis in sputum samples. J Appl Microbiol. 2019;128:1497–502. Crabbé A, Leroy B, Wattiez R, Aertsen A, Leys N, Cornelis P, et al. Differential proteomics and physiology of Pseudomonas putida KT2440 under filament-inducing conditions. BMC Microbiol. 2012;12:1–9. Maskow T, Morais FM, Rosa LFM, Qian YG, Harnisch F. Insufficient oxygen diffusion leads to distortions of microbial growth parameters assessed by isothermal microcalorimetry. RSC Adv. 2014;4:32730–7. Tronnolone H, Tam A, Szenczi Z, Green JEF, Balasuriya S, Tek EL, et al. Diffusion-limited growth of microbial colonies. Sci Rep. 2018;8:1–11. Warren M, Hwa T. The growth of bacterial colonies. Biophys J. 2012;102:152a. Stoward PJ. Thermodynamics of biological growth. Nature. 1962;194:977–8. Egli T. Microbial growth and physiology: a call for better craftsmanship. Front Microbiol. 2015;6:1–12. Antoniou P, Hamilton J, Koopman B, Jain R, Holloway B, Lyberatos G, et al. Effect of temperature and ph on the effective maximum specific growth rate of nitrifying bacteria. Water Res. 1990;24:97–101. Zaharia DC, Muntean AA, Popa MG, Steriade AT, Balint O, Micut R, et al. Comparative analysis of Staphylococcus aureus and Escherichia coli microcalorimetric growth. BMC Microbiol. 2013;13:1–14. Katarao A, Yamato N, Takahashi K. Calorimetric study of Escherichia coli growth on Bouillon medium. Agric Biol Chem. 1987;51:2437–42. Sezonov G, Joseleau-Petit D, D’Ari R. Escherichia coli physiology in Luria-Bertani broth. J Bacteriol. 2007;189:8746–9. Burrows W. The nutritional requirements of bacteria. Q Rev Biol. 1936;11:406–24. Russell JB, Cook GM. Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev. 1995;59:48–62. Loesberg C, van Miltenburg JC, van Wuk R. Heat production of mammalian cells at different cell-cycle phases. J Therm Biol. 1982;7:209–13. Kimura T, Takahashi K. Calorimetric studies of soil microbes: quantitative relation between heat evolution during microbial degradation of glucose and changes in microbial activity in soil. Microbiology. 1985;131:3083–9. Robador A, LaRowe DE, Finkel SE, Amend JP, Nealson KH. Changes in microbial energy metabolism measured by nanocalorimetry during growth phase transitions. Front Microbiol. 2018;9:1–7. Bonkat G, Braissant O, Widmer AF, Frei R, Rieken M, Wyler S, et al. Rapid detection of urinary tract pathogens using microcalorimetry: principle, technique and first results. BJU Int. 2012;110:892–7. Fricke C, Xu J, Jiang FL, Liu Y, Harms H, Maskow T. Rapid culture-based detection of Legionella pneumophila using isothermal microcalorimetry with an improved evaluation method. Microbiol Biotechnol. 2020;13:1262–72. Bobbitt JA, Betts RP. The removal of bacteria from solutions by membrane filtration. J Microbiol Methods. 1992;16:215–20. Lerchner J, Schulz A, Poeschel T, Wolf A, Hartmann T, Mertens F, et al. Chip calorimetry and biomagnetic separation: fast detection of bacterial contamination at low cell titers. Eng Life Sci. 2012;12:615–20.