How to share a secret with cheaters
Tóm tắt
Từ khóa
Tài liệu tham khảo
L. M. Adleman and M.-D. A. Huang, Recognizing primes in random polynomial time,Proc. 19th Annual ACM Symp. Theory Comput., pp. 462–469, May 1987.
A. V. Aho, J. E. Hopcroft, and J. D. Ullman,The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.
J. C. Benaloh, Secret sharing homomorphisms: keeping shares of a secret secret,Advances in Cryptology—CRYPTO '86, pp. 251–260, Lecture Notes in Computer Science, vol. 263, Springer-Verlag, Berlin, 1987.
B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, Verifiable secret sharing and achieving simultaneity in the presence of faults,Proc. 26th Symp. Found. Comp. Sci., pp. 383–395, October 1985.
P. Feldman, A practical scheme for noninteractive verifiable secret sharing,Proc. 28th Symp. Found. Comp. Sci., pp. 427–437, October 1987.
O. Goldreich, S. Micali, and A. Wigderson, How to prove all NP statements in zero-knowledge and a methodology of cryptographic protocol design,Advances in Cryptology—CRYPTO '86, pp. 171–185, Lecture Notes in Computer Science, vol. 263, Springer-Verlag, Berlin, 1987.
S. Goldwasser, S. Micali, and R. L. Rivest, A “paradoxical” solution to the signature problem,Proc. 25th Symp. Found. Comp. Sci., pp. 441–448, October 1984.
J.D. Lipson,Elements of Algebra and Algebraic Computing, Addison-Wesley, Reading, MA, 1981.
M. O. Rabin, Randomized Byzantine generals,Proc. 24th Symp. Found. Comp. Sci., pp. 403–409, November 1983.