How to measure drug transport across the blood-brain barrier
Tóm tắt
Từ khóa
Tài liệu tham khảo
van de Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction paradise?Nat Rev Drug Discov 2: 192–204, 2003.
Levin VA, Fenstermacher JD, Patlak CS. Sucrose and inulin space measurements of cerebral cortex in four mammalian species.Am J Physiol (Lond) 219: 1528–1533, 1970.
Ohno K, Pettigrew KD, Rapoport SI. Lower limits of cerebrovascular permeability to nonelectrolytes in the conscious rat.Am J Physiol (Lond) 235: H299-H307, 1978.
Crone C. The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method.Acta Physiol Scand 58: 292–305, 1963.
Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles.Am J Physiol (Lond) 197: 1205–1210, 1959.
Fenstermacher JD, Blasberg RG, Patlak CS. Methods for quantifying the transport of drugs across brain barrier systems.Pharmacol Ther 14: 217–248, 1981.
Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data.J Cereb Blood Flow Metab 3: 1–7, 1983.
Blasberg RG, Fenstermacher JD, Patlak CS. Transport of α-aminoisobutyric acid across brain capillary and cellular membranes.J Cereb Blood Flow Metab 3: 8–32, 1983.
Smith QR. A review of blood-brain barrier transport techniques.Methods Mol Med 89: 193–208, 2003.
Collins JM, Dedrick RL. Distributed model for drug delivery to CSF and brain tissue.Am J Physiol (Lond) 245: R303-R310, 1983.
Tetsuya T, Ohtsuki S. Brain-to-blood transporters for endogenous substrates and xenobiotics at the blood-brain barrier: an overview of biology and methodology.NeuroRx 2: 63–71, 2005.
Bickel U, Thomsen T, Fischer JP, Weber W, Kewitz H. Galanthamine: pharmacokinetics, tissue distribution and cholinesterase inhibition in brain of mice.Neuropharmacology 30: 447–454, 1991.
Oldendorf WH. Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard.Brain Res 24: 372–376, 1970.
Oldendorf WH. Clearance of radiolabeled substances by brain after arterial injection using a diffusible internal standard. In: Research methods in neurochemistry (Marks N, Rodnight R, eds.). New York: Plenum Publishing Co., 91–112, 1981.
Cornford EM. The carotid artery single injection technique. In: Introduction to the blood-brain barrier: methodology, biology and pathology (Pardridge WM, ed), pp 11–23. Cambridge, UK: Cambridge University Press, 1998.
Pardridge WM, Landaw EM, Miller LP, Braun LD, Oldendorf WH. Carotid artery injection technique: bounds for bolus mixing by plasma and by brain.J Cereb Blood Flow Metab 5: 576–583, 1985.
Takasato Y, Rapoport SI, Smith QR. An in situ brain perfusion technique to study cerebrovascular transport in the rat.Am J Physiol (Lond) 247: H484-H493, 1984.
Zlokovic BV, Begley DJ, Djuricic BM, Mitrovic DM. Measurement of solute transport across the blood-brain barrier in the perfused guinea pig brain: method and application to N-methyl-α-aminoisobutyric acid.J Neurochem 46: 1444–1451, 1986.
Dagenais C, Rousselle C, Pollack GM, Scherrmann JM. Development of an in situ mouse brain perfusion model and its application to mdr1a P-glycoprotein-deficient mice.J Cereb Blood Flow Metab 20: 381–386, 2000.
Smith QR, Allen DD. In situ brain perfusion technique.Methods Mol Med 89: 209–218, 2003.
Triguero D, Buciak J, Pardridge WM. Capillary depletion method for quantification of blood-brain barrier transport of circulating peptides and plasma proteins.J Neurochem 54: 1882–1888, 1990.
Pardridge WM. Receptor-mediated transcytosis of peptides. In: Brain drug targeting—the future of brain drug development. Cambridge, UK: Cambridge University Press, 82–125, 2001.
Pardridge WM, Yoshikawa T, Kang YS, Miller LP. Blood-brain barrier transport and brain metabolism of adenosine and adenosine analogs.J Pharmacol Exp Ther 268: 14–18, 1994.
Samii A, Bickel U, Stroth U, Pardridge WM. Blood-brain barrier transport of neuropeptides: analysis with a metabolically stable dermorphin analogue.Am J Physiol (Lond) 267: E124-E131, 1994.
Pardridge WM, Oldendorf WH. Kinetics of blood-brain transport of hexoses.Biochim Biophys Acta 382: 377–392, 1975.
Smith QR, Takasato Y. Kinetics of amino acid transport at the blood-brain barrier studied using an in situ brain perfusion technique.Ann NY Acad Sci 481: 186–201, 1986.
Pardridge WM. Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids.Neurochem Res 23: 635–644, 1998.
Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat.J Neurochem 28: 897–916, 1977.
Sakurada O, Kennedy C, Jehle J, Brown JD, Carbin GL, Sokoloff L. Measurement of local cerebral blood flow with iodo [14C] antipyrine.Am J Physiol (Lond) 234: H59-H66, 1978.
Asotra K, Ningaraj N, Black KL. Measurement of blood-brain and blood-tumor barrier permeabilities with [14C]-labeled tracers.Methods Mol Med 89: 177–190, 2003.
Belayev L, Zhao W, Busto R, Ginsberg MD. Transient middle cerebral artery occlusion by intraluminal suture: I. Three-dimensional autoradiographic image-analysis of local cerebral glucose metabolism-blood flow interrelationships during ischemia and early recirculation.J Cereb Blood Flow Metab 17: 1266–1280, 1997.
Fenstermacher JD, Wei L. Measuring local cerebral capillary permeability-surface area products by quantitative autoradiography. In: Introduction to the blood-brain barrier: methodology, biology and pathology (Pardridge WM, ed), pp 122–132. Cambridge, UK: Cambridge University Press, 1998.
Huang SC, Hoh C, Barrio JR, Phelps ME. Measurement of blood-brain barrier permeability in humans with positron emission tomography. In: Introduction to the blood-brain barrier: methodology, biology and pathology (Pardridge WM, ed), pp 122–146. Cambridge, UK: Cambridge University Press, 1998.
Schmidt KC, Turkheimer FE. Kinetic modeling in positron emission tomography.Q J Nucl Med 46: 70–85, 2002.
Elsinga PH, Hendrikse NH, Bart J, Vaalburg W, van Waarde A. PET studies on P-glycoprotein function in the blood-brain barrier: how it affects uptake and binding of drugs within the CNS.Curr Pharm Des 10: 1493–1503, 2004.
Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts.Magn Reson Med 17: 357–367, 1991.
Ewing JR, Knight RA, Nagaraja TN, Yee JS, Nagesh V, Whitton PA, et al. Patlak plots of Gd-DTPA MRI data yield blood-brain transfer constants concordant with those of 14C-sucrose in areas of blood-brain opening.Magn Reson Med 50: 283–292, 2003.
Artemov D. Molecular magnetic resonance imaging with targeted contrast agents.J Cell Biochem 90: 518–524, 2003.
Deguchi Y, Morimoto K. Application of an in vivo brain micro-dialysis technique to studies of drug transport across the blood-brain barrier.Curr Drug Metab 2: 411–423, 2001.
de Lange EC, de Boer AG, Breimer DD. Methodological issues in microdialysis sampling for pharmacokinetic studies.Adv Drug Deliv Rev 45: 125–148, 2000.
Westergren I, Nystrom B, Hamberger A, Johansson BB. Intracerebral dialysis and the blood-brain barrier.J Neurochem 64: 229–234, 1995.
Bungay PM, Morrison PF, Dedrick RL. Steady-state theory for quantitative microdialysis of solutes and water in vivo and in vitro.Life Sci 46: 105–119, 1990.
Elmquist WF, Sawchuk RJ. Application of microdialysis in pharmacokinetic studies.Pharm Res 14: 267–288, 1997.
Hammarlund-Udenaes M. The use of microdialysis in CNS drug delivery studies. Pharmacokinetic perspectives and results with analgesics and antiepileptics.Adv Drug Deliv Rev 45: 283–294, 2000.
Hammarlund-Udenaes M, Paalzow LK, de Lange EC. Drug equilibration across the blood-brain barrier—pharmacokinetic considerations based on the microdialysis method.Pharm Res 14: 128–134, 1997.
Wang Y, Welty DF. The simultaneous estimation of the influx and efflux blood-brain barrier permeabilities of gabapentin using a microdialysis-pharmacokinetic approach.Pharm Res 13: 398–403, 1996.
Aasmundstad TA, Morland J, Paulsen RE. Distribution of morphine 6-glucuronide and morphine across the blood-brain barrier in awake, freely moving rats investigated by in vivo microdialysis sampling.J Pharmacol Exp Ther 275: 435–441, 1995.
Wu D, Kang YS, Bickel U, Pardridge WM. Blood-brain barrier permeability to morphine-6-glucuronide is markedly reduced compared with morphine.Drug Metab Dispos 25: 768–771, 1997.
Bickel U, Schumacher OP, Kang YS, Voigt K. Poor permeability of morphine 3-glucuronide and morphine 6-glucuronide through the blood-brain barrier in the rat.J Pharmacol Exp Ther 278: 107–113, 1996.
Bouw MR, Xie R, Tunblad K, Hammarlund-Udenaes M. Blood-brain barrier transport and brain distribution of morphine-6-glucuronide in relation to the antinociceptive effect in rats—pharmacokinetic/pharmacodynamic modelling.Br J Pharmacol 134: 1796–1804, 2001.
Stain-Texier F, Boschi G, Sandouk P, Scherrmann JM. Elevated concentrations of morphine 6-β-D-glucuronide in brain extracellular fluid despite low blood-brain barrier permeability.Br J Pharmacol 128: 917–924, 1999.
Hilgert M, Noldner M, Chatterjee SS, Klein J. KA-672 inhibits rat brain acetylcholinesterase in vitro but not in vivo.Neurosci Lett 263:193–196, 1999.
Groothuis DR, Ward S, Schlageter KE, Itskovich AC, Schwerin SC, Allen CV, et al. Changes in blood-brain barrier permeability associated with insertion of brain cannulas and microdialysis probes.Brain Res 803: 218–230, 1998.
Morgan ME, Singhal D, Anderson BD. Quantitative assessment of blood-brain barrier damage during microdialysis.J Pharmacol Exp Ther 277: 1167–1176, 1996.
de Lange EC, Danhof M. Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain.Clin Pharmacokinet 41: 691–703, 2002.
Ooie T, Terasaki T, Suzuki H, Sugiyama Y. Quantitative brain microdialysis study on the mechanism of quinolones distribution in the central nervous system.Drug Metab Dispos 25: 784–789, 1997.
Ooie T, Terasaki T, Suzuki H, Sugiyama Y. Kinetic evidence for active efflux transport across the blood-brain barrier of quinolone antibiotics.J Pharmacol Exp Ther 283: 293–304, 1997.
Wu D, Clement JG, Pardridge WM. Low blood-brain barrier permeability to azidothymidine (AZT), 3TC, and thymidine in the rat.Brain Res 791: 313–316, 1998.
Pardridge WM. Isolated brain capillaries: and in vitro model of blood-barin barrier research. In: Introduction to the blood-brain barrier: methodology, biology and pathology (Pardridge WM, ed), pp 49–61. Cambridge, UK: Cambridge University Press, 1998.
Lasbennes F, Gayet J. Capacity for energy metabolism in microvessels isolated from rat brain.Neurochem Res 9: 1–10, 1984.
Osburg B, Peiser C, Domling D, Schomburg L, Ko YT, Voigt K, et al. Effect of endotoxin on expression of TNF receptors and transport of TNF-α at the blood-brain barrier of the rat.Am J Physiol (Lond) Endocrinol Metab 283: E899-E908, 2002.
Huwyler J, Pardridge WM. Examination of blood-brain barrier transferrin receptor by confocal fluorescent microscopy of unfixed isolated rat brain capillaries.J Neurochem 70: 883–886, 1998.
Miller DS, Nobmann SN, Gutmann H, Toeroek M, Drewe J, Flicker G. Xenobiotic transport across isolated brain microvessels studied by confocal microscopy.Mol Pharmacol 58: 1357–1367, 2000.
Sanchez del Pino MM, Hawkins RA, Peterson DR. Neutral amino acid transport by the blood-brain barrier. Membrane vesicle studies.J Biol Chem 267: 25951–25957, 1992.
Peterson DR, Hawkins RA. Transport studies using membrane vesicles.Methods Mol Med 89: 233–247, 2003.
Gumbleton M, Audus KL. Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier.J Pharm Sci 90: 1681–1698, 2001.
Reichel A, Begley DJ, Abbott NJ. An overview of in vitro techniques for blood-brain barrier studies.Methods Mol Med 89: 307–324, 2003.
Audus KL, Rose JM, Wang W, Borchardt RT. Brain microvessel endothelia cell culture systems. In: Introduction to the blood-brain barrier: methodology, biology and pathology (Pardridge WM, ed), pp 86–93. Cambridge, UK: Cambridge University Press, 1998.
Patlak CS, Paulson OB. The role of unstirred layers for water exchange across the blood-brain barrier.Microvasc Res 21: 117–127, 1981.
Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study.J Physiol (Lond) 429: 47–62, 1990.
Cecchelli R, Dehouck B, Descamps L, Fenart L, Buee-Scherrer VV, Duhem C, et al. In vitro model for evaluating drug transport across the blood-brain barrier.Adv Drug Deliv Rev 36: 165–178, 1999.
Hoheisel D, Nitz T, Franke H, Wegener J, Hakvoort A, Tilling T, Galla HJ. Hydrocortisone reinforces the blood-brain properties in a serum free cell culture system.Biochem Biophys Res Commun 247: 312–315, 1998.
Terasaki T, Ohtsuki S, Hori S, Takanaga H, Nakashima E, Hosoya K. New approaches to in vitro models of blood-brain barrier drug transport.Drug Discov Today 8: 944–954, 2003.
Pardridge WM, Triguero D, Yang J, Cancilla PA. Comparison of in vitro and in vivo models of drug transcytosis through the blood-brain barrier.J Pharmacol Exp Ther 253: 884–891, 1990.
Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability.J Med Chem 23: 682–684, 1980.
Oldendorf WH. Lipid solubility and drug penetration of the blood brain barrier.Proc Soc Exp Biol Med 147: 813–815, 1974.
Engkvist O, Wrede P, Rester U. Prediction of CNS activity of compound libraries using substructure analysis.J Chem Inf Comput Sci 43: 155–160, 2003.
Clark DE. In silico prediction of blood-brain barrier permeation.Drug Discov Today 8: 927–933, 2003.
Martin I. Prediction of blood-brain barrier penetration: are we missing the point?Drug Discov Today 9: 161–162, 2004.
Pardridge WM. Log(BB), PS products and in silico models of drug brain penetration.Drug Discov Today 9: 392–393, 2004.
Habgood MD, Begley DJ, Abbott NJ. Determinants of passive drug entry into the central nervous system.Cell Mol Neurobiol 20: 231–253, 2000.
Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability.J Pharmacol Toxicol Methods 44: 235–249, 2000.
Hansch C, Bjorkroth JP, Leo A. Hydrophobicity and central nervous system agents: on the principle of minimal hydrophobicity in drug design.J Pharm Sci 76: 663–687, 1987.
Buchwald P, Bodor N. Octanol-water partition: searching for predictive models.Curr Med Chem 5: 353–380, 1998.
Moriguchi I, Hirono S, Liu Q, Nakagome Y, Matsushita Y. Simple method calculating octanol/water partition coefficient.Chem Pharm Bull 40: 127–130, 1992.
Platts JA, Abraham MH, Zhao YH, Hersey A, Ijaz L, Butina D. Correlation and prediction of a large blood-brain distribution data set—an LFER study.Eur J Med Chem 36: 719–730, 2001.
Keseru GM, Molnar L. High-throughput prediction of blood-brain partitioning: a thermodynamic approach.J Chem Inf Comput Sci 41: 120–128, 2001.
van de Waterbeemd H, Camenisch G, Folkers G, Chretien JR, Raevsky OA. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors.J Drug Target 6: 151–165, 1998.
Clark DE. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration.J Pharm Sci 88: 815–821, 1999.
Kelder J, Grootenhuis PD, Bayada DM, Delbressine LP, Ploemen JP. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs.Pharm Res 16: 1514–1519, 1999.
Lobell M, Molnar L, Keseru GM. Recent advances in the prediction of blood-brain partitioning from molecular structure.J Pharm Sci 92: 360–370, 2003.
Norinder U, Haeberlein M. Computational approaches to the prediction of the blood-brain distribution.Adv Drug Deliv Rev 54: 291–313, 2002.
Gratton JA, Abraham MH, Bradbury MW, Chadha HS. Molecular factors influencing drug transfer across the blood-brain barrier.J Pharm Pharmacol 49: 1211–1216, 1997.
Abraham MH, Chadha HS, Mitchell RC. Hydrogen bonding. 33. Factors that influence the distribution of solutes between blood and brain.J Pharm Sci 83: 1257–1268, 1994.
Trauble H. The movement of molecules across lipid membranes: a molecular theory.J Membr Biol 4: 193–208, 1971.