How to cope with insect resistance to Bt toxins?

Trends in Biotechnology - Tập 26 Số 10 - Trang 573-579 - 2008
Alejandra Bravo1, Mário Soberón2
1Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62250, Morelos, Mexico.
2Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kleter, 2007, Altered pesticide use on transgenic crops and the associated general impact from an environmental perspective, Pest Manag. Sci., 63, 1107, 10.1002/ps.1448

Qaim, 2003, Yield effects of genetically modified crops in developing countries, Science, 299, 900, 10.1126/science.1080609

Crickmore, 1998, Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins, Microbiol. Mol. Biol. Rev., 62, 807, 10.1128/MMBR.62.3.807-813.1998

Bravo, 2007, Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control, Toxicon, 49, 423, 10.1016/j.toxicon.2006.11.022

Tabashnik, 1994, Evolution of resistance to Bacillus thuringiensis, Annu. Rev. Entomol., 39, 47, 10.1146/annurev.en.39.010194.000403

Gould, 1998, Sustainability of transgenic insecticidal cultivars: integrating pests genetics and ecology, Annu. Rev. Entomol., 43, 701, 10.1146/annurev.ento.43.1.701

Tabashnik, 2008, Insect resistance to Bt crops: evidence versus theory, Nat. Biotechnol., 26, 199, 10.1038/nbt1382

Griffitts, 2005, Many roads to resistance: how invertebrates adapt to Bt toxins, Bioessays, 27, 614, 10.1002/bies.20239

Ferré, 2002, Biochemistry and genetics of insect resistance to Bacillus thuringiensis, Annu. Rev. Entomol., 47, 501, 10.1146/annurev.ento.47.091201.145234

Tabashnik, 2003, Insect resistance to transgenic Bt crops: lessons from the laboratory and field, J. Econ. Entomol., 96, 1031, 10.1603/0022-0493-96.4.1031

Georghiou, 1997, Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae), Appl. Environ. Microbiol., 63, 1095, 10.1128/AEM.63.3.1095-1101.1997

Wirth, 2005, Cyt1A of Bacillus thuringiensis delays evolution of resistance to Cry11A in the mosquito Culex quinquefasciatus, Appl. Environ. Microbiol., 71, 185, 10.1128/AEM.71.1.185-189.2005

Griffitts, 2001, Bacillus thuringiensis toxin resistance from loss of a putative carbohydrate-modifying enzyme, Science, 293, 860, 10.1126/science.1062441

Janmaat, 2003, Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Tricoplusia ni, Proc. Biol. Sci., 270, 2263, 10.1098/rspb.2003.2497

Gahan, 2001, Identification of a gene associated with Bt resistance in Heliothis virescens, Science, 293, 857, 10.1126/science.1060949

Morin, 2003, Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm, Proc. Natl. Acad. Sci. U. S. A., 100, 5004, 10.1073/pnas.0831036100

Xu, 2005, Disruption of a cadherin gene associated with resistance to Cry1Ac- endotoxin of Bacillus thuringiensis in Helicoverpa armigera, Appl. Environ. Microbiol., 71, 948, 10.1128/AEM.71.2.948-954.2005

Yang, 2007, Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac, Appl. Environ. Microbiol., 73, 6939, 10.1128/AEM.01703-07

Gunning, 2005, New resistance mechanism in Helicoverpa armigera threatens transgenic crop expressing Bacillus thuringiensis Cry1Ac toxin, Appl. Environ. Microbiol., 71, 2558, 10.1128/AEM.71.5.2558-2563.2005

Rahman, 2004, Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephesia kuehniella, Proc. Natl. Acad. Sci. U. S. A., 101, 2696, 10.1073/pnas.0306669101

Baxter, 2005, Novel genetic basis of field-evolved resistance to Bt in Plutella xylostella, Insect Mol. Biol., 14, 327, 10.1111/j.1365-2583.2005.00563.x

Baxter, 2008, Genetic mapping of Bt-toxin binding proteins in a Cry1A-toxin resistant strain of diamondback moth Plutella xylostella, Insect Biochem. Mol. Biol., 38, 125, 10.1016/j.ibmb.2007.09.014

Vadlamudi, 1995, Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis, J. Biol. Chem., 270, 5490, 10.1074/jbc.270.10.5490

Gómez, 2002, Cadherin-like receptor binding facilitates proteolytic cleavage of helix α-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin, FEBS Lett., 513, 242, 10.1016/S0014-5793(02)02321-9

Bravo, 2004, Oligomerization triggers differential binding of a pore-forming toxin to a different receptor leading to efficient interaction with membrane microdomains, Biochim. Biophys. Acta, 1667, 38, 10.1016/j.bbamem.2004.08.013

Jurat-Fuentes, 2006, Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae, J. Invertebr. Pathol, 92, 166, 10.1016/j.jip.2006.01.010

Pardo-López, 2006, Structural changes of the Cry1Ac oligomeric pre-pore from Bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion, Biochemistry, 45, 10329, 10.1021/bi060297z

Zhuang, 2002, Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation, J. Biol. Chem., 277, 13863, 10.1074/jbc.M110057200

Zhang, 2006, A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis, Proc. Natl. Acad. Sci. U. S. A., 103, 9897, 10.1073/pnas.0604017103

Gatehouse, 2008, Biotechnological prospects for engineering insect-resistant plants, Plant Physiol., 146, 881, 10.1104/pp.107.111096

Moellenbeck, 2001, Insecticidal proteins from Bacillus thuringiensis protect corn from corn rootworms, Nat. Biotechnol., 19, 668, 10.1038/90282

Christou, 2006, Recent developments and future prospects in insect pest control in transgenic crops, Trends Plant Sci., 11, 302, 10.1016/j.tplants.2006.04.001

Zhao, 2003, Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution, Nat. Biotechnol., 21, 1493, 10.1038/nbt907

Chitkowski, 2003, Field and laboratory evaluations of transgenic cottons expressing one or two Bacillus thuringiensis var kurstaki Berliner proteins for management of noctuid (Lepidoptera) pests, J. Econ. Entomol., 96, 755, 10.1603/0022-0493-96.3.755

Zhao, 2005, Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants, Proc. Natl. Acad. Sci. U. S. A., 102, 8426, 10.1073/pnas.0409324102

Jurat-Fuentes, 2003, Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggest multiple mechanisms of resistance, Appl. Environ. Microbiol., 69, 5898, 10.1128/AEM.69.10.5898-5906.2003

Gahan, 2005, Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera: Noctudiae), J. Econ. Entomol., 98, 1357, 10.1603/0022-0493-98.4.1357

Soberón, 2007, Engineering modified Bt toxins to counter insect resistance, Science, 318, 1640, 10.1126/science.1146453

Pérez, 2005, Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor, Proc. Natl. Acad. Sci. U. S. A., 102, 18303, 10.1073/pnas.0505494102

Wirth, 1997, CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus, Proc. Natl. Acad. Sci. U. S. A., 94, 10536, 10.1073/pnas.94.20.10536

Promdonkoy, 2003, Investigation of the pore-forming mechanism of a cytolytic δ-endotoxin from Bacillus thuringiensis, Biochem. J., 374, 255, 10.1042/bj20030437

Pérez, 2007, Bacillus thuringiensis subsp. israelensis Cyt1Aa enhances activity of Cry11Aa toxin by facilitating the formation of a pre-pore oligomeric structure, Cell. Microbiol., 9, 2931, 10.1111/j.1462-5822.2007.01007.x

Guerchicoff, 1997, Identification and characterization of a previously undescribed cyt gene in Bacillus thuringiensis subsp. israelensis, Appl. Environ. Microbiol., 63, 2716, 10.1128/AEM.63.7.2716-2721.1997

Sayyed, 2001, Cyt1Aa from Bacillus thuringiensis subsp. israelensis is toxic to the diamondback moth, Plutella xylostella, and synergizes the activity of Cry1Ac towards a resistant strain, Appl. Environ. Microbiol., 67, 5859, 10.1128/AEM.67.12.5859-5861.2001

Rincón-Castro, 1999, Antagonism between Cry1Ac1 and Cyt1A1 toxins of Bacillus thuringiensis, Appl. Environ. Microbiol., 65, 2049, 10.1128/AEM.65.5.2049-2053.1999

Meyer, 2001, Cyt1A from Bacillus thuringiensis lacks toxicity to susceptible and resistant larvae of diamondback moth (Plutella xylostella) and pink bollworm (Pectinophora gossypiella), Appl. Environ. Microbiol., 67, 462, 10.1128/AEM.67.1.462-463.2001

Koni, 1994, Biochemical characterization of Bacillus thuringiensis cytolytic delta-endotoxins, Microbiology, 140, 1869, 10.1099/13500872-140-8-1869

Chen, 2007, Synergism of Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin, Proc. Natl. Acad. Sci. U. S. A., 104, 13901, 10.1073/pnas.0706011104

Mao, 2007, Silencing a cotton bollworm monoxygenase gene by plant-mediated RNAi impairs larval tolerance to gossypol, Nat. Biotechnol., 25, 1307, 10.1038/nbt1352

Baum, 2007, Control of coleopteran insect pests through RNA interference, Nat. Biotechnol., 25, 1322, 10.1038/nbt1359

Griffitts, 2005, Glycolipds as receptors for Bacillus thuringiensis crystal toxin, Science, 307, 922, 10.1126/science.1104444

Oppert, 1997, Proteinase-mediated insect resistance to Bacillus thuringiensis toxins, J. Biol. Chem., 272, 23473, 10.1074/jbc.272.38.23473

Jurat-Fuentes, 2004, Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae, Eur. J. Biochem., 271, 3127, 10.1111/j.1432-1033.2004.04238.x

Herrero, 2005, Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four aminopeptidase N genes, BMC Genomics, 6, 96, 10.1186/1471-2164-6-96

Hua, 2008, Anopheles gambiae cadherin AgCad1 binds Cry4Ba toxin of Bacillus thuringiensis israelensis and a fragment of AgCad1 synergizes toxicity, Biochemistry, 47, 5101, 10.1021/bi7023578

Fernández, 2006, A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae, Biochem. J., 394, 77, 10.1042/BJ20051517

Ochoa-Campuzano, 2007, An ADAM metalloprotease is a Cry3Aa Bacillus thuringiensis toxin receptor, Biochem. Biophys. Res. Commun., 362, 437, 10.1016/j.bbrc.2007.07.197

Rausell, 2004, Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3 toxins in membranes of Leptinotarsa decemlineata, Biochim. Biophys. Acta, 1660, 99, 10.1016/j.bbamem.2003.11.004

Forcada, 1996, Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins, Arch. Insect Biochem. Physiol., 31, 257, 10.1002/(SICI)1520-6327(1996)31:3<257::AID-ARCH2>3.0.CO;2-V

Rajagopal, 2002, Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor, J. Biol. Chem., 277, 46849, 10.1074/jbc.C200523200

Ma, 2005, Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae?, Insect Biochem. Mol. Biol., 35, 729, 10.1016/j.ibmb.2005.02.011

Mahbubur Rahman, 2007, Tolerance to Bacillus thuringiensis endotoxin in immune-suppressed larvae of the flour moth Ephestia kuehniella, J. Invertebr. Pathol., 96, 125, 10.1016/j.jip.2007.03.018

Huang, 2007, Sugarcane borer (Lepidoptera: Crambidae) resistance to transgenic Bacillus thuringiensis maize, J. Econ. Entomol., 100, 164, 10.1603/0022-0493(2007)100[164:SBLCRT]2.0.CO;2

Anilkumar, 2008, Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie), Appl. Environ. Microbiol., 74, 462, 10.1128/AEM.01612-07