How to Measure Molecular Forces in Cells: A Guide to Evaluating Genetically-Encoded FRET-Based Tension Sensors
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adhikari, A. S., J. Chai, and A. R. Dunn. Mechanical load induces a 100-fold increase in the rate of collagen proteolysis by MMP-1. J. Am. Chem. Soc. 133:1686–1689, 2011.
Austen, K., C. Kluger, A. Freikamp, A. Chrostek-Grashoff, and C. Grashoff. Generation and analysis of biosensors to measure mechanical forces within cells. In: Cell-Cell Interactions, edited by T. A. Baudino. New York: Humana Press, 2013, pp. 169–184.
Bao, G., and S. Suresh. Cell and molecular mechanics of biological materials. Nat. Mater. 2:715–725, 2003.
Blakely, B. L., C. E. Dumelin, B. Trappmann, L. M. McGregor, C. K. Choi, P. C. Anthony, V. K. Duesterberg, B. M. Baker, S. M. Block, D. R. Liu, and C. S. Chen. A DNA-based molecular probe for optically reporting cellular traction forces. Nat. Methods 11:1229–1232, 2014
Borghi, N., M. Sorokina, O. G. Shcherbakova, W. I. Weis, B. L. Pruitt, W. J. Nelson, and A. R. Dunn. E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch. Proc. Natl. Acad. Sci. USA 109:12568–12573, 2012.
Cai, D., S.-C. Chen, M. Prasad, L. He, X. Wang, V. Choesmel-Cadamuro, J. K. Sawyer, G. Danuser, and D. J. Montell. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157:1146–1159, 2014.
Campàs, O., T. Mammoto, S. Hasso, R. A. Sperling, D. O’Connell, A. G. Bischof, R. Maas, D. A. Weitz, L. Mahadevan, and D. E. Ingber. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11:183–189, 2014.
Capitanio, M., and F. S. Pavone. Interrogating biology with force: single molecule high-resolution measurements with optical tweezers. Biophys. J. 105:1293–1303, 2013.
Chang, C.-W., and S. Kumar. Vinculin tension distributions of individual stress fibers within cell-matrix adhesions. J. Cell Sci. 126:3021–3030, 2013.
Chen, H., D. M. Cohen, D. M. Choudhury, N. Kioka, and S. W. Craig. Spatial distribution and functional significance of activated vinculin in living cells. J. Cell Biol. 169:459–470, 2005.
Chyan, C.-L., F.-C. Lin, H. Peng, J.-M. Yuan, C.-H. Chang, S.-H. Lin, and G. Yang. Reversible mechanical unfolding of single ubiquitin molecules. Biophys. J. 87:3995–4006, 2004.
Conway, D. E., M. T. Breckenridge, E. Hinde, E. Gratton, C. S. Chen, and M. A. Schwartz. Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr. Biol. 23:1024–1030, 2013.
Crivat, G., and J. W. Taraska. Imaging proteins inside cells with fluorescent tags. Trends Biotechnol. 30:8–16, 2012.
del Rio, A., R. Perez-Jimenez, R. Liu, P. Roca-Cusachs, J. M. Fernandez, and M. P. Sheetz. Stretching single talin rod molecules activates vinculin binding. Science 323:638–641, 2009.
Dietz, H., and M. Rief. Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc. Natl. Acad. Sci. USA 101:16192–16197, 2004.
Diz-Muñoz, A., D. A. Fletcher, and O. D. Weiner. Use the force: membrane tension as an organizer of cell shape and motility. Trends Cell Biol. 23:47–53, 2013.
Dogterom, M., and B. Yurke. Measurement of the force-velocity relation for growing microtubules. Science 278:856–860, 1997.
Finer, J. T., R. M. Simmons, and J. A. Spudich. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119, 1994.
Geiger, B., J. P. Spatz, and A. D. Bershadsky. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10:21–33, 2009.
Gennerich, A., A. P. Carter, S. L. Reck-Peterson, and R. D. Vale. Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131:952–965, 2007.
Grashoff, C., B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–266, 2010.
Guilluy, C., L. D. Osborne, L. Van Landeghem, L. Sharek, R. Superfine, R. Garcia-Mata, and K. Burridge. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat. Cell Biol. 16:376–381, 2014.
Guo, B., and W. H. Guilford. Mechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction. Proc. Natl. Acad. Sci. USA 103:9844–9849, 2006.
Hayakawa, K., H. Tatsumi, and M. Sokabe. Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. J. Cell Biol. 195:721–727, 2011.
Hersch, N., B. Wolters, G. Dreissen, R. Springer, N. Kirchgeßner, R. Merkel, and B. Hoffmann. The constant beat: cardiomyocytes adapt their forces by equal contraction upon environmental stiffening. Biol. Open 2:351–361, 2013.
Ichimura, T., H. Fujita, K. Yoshizawa, and T. M. Watanabe. Engineering strain-sensitive yellow fluorescent protein. Chem. Commun. 48:7871–7873, 2012.
Iwai, S., and T. Q. P. Uyeda. Visualizing myosin-actin interaction with a genetically-encoded fluorescent strain sensor. Proc. Natl. Acad. Sci. USA 105:16882–16887, 2008.
Jurchenko, C., Y. Chang, Y. Narui, Y. Zhang, and K. S. Salaita. Integrin-generated forces lead to streptavidin-biotin unbinding in cellular adhesions. Biophys. J. 106:1436–1446, 2014.
Kilinc, D., and G. U. Lee. Advances in magnetic tweezers for single molecule and cell biophysics. Integr. Biol. 6:27–34, 2014.
Kong, F., A. J. García, A. P. Mould, M. J. Humphries, and C. Zhu. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185:1275–1284, 2009.
Krieg, M., A. R. Dunn, and M. B. Goodman. Mechanical control of the sense of touch by β-spectrin. Nat. Cell Biol. 16:224–233, 2014.
Kuriyama, S., E. Theveneau, A. Benedetto, M. Parsons, M. Tanaka, G. Charras, A. Kabla, and R. Mayor. In vivo collective cell migration requires an LPAR2-dependent increase in tissue fluidity. J. Cell Biol. 206:113–127, 2014.
Lang, K., and J. W. Chin. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem. Rev. 114:4764–4806, 2014.
Law, R., G. Liao, S. Harper, G. Yang, D. W. Speicher, and D. E. Discher. Pathway shifts and thermal softening in temperature-coupled forced unfolding of spectrin domains. Biophys. J. 85:3286–3293, 2003.
Leerberg, J. M., G. A. Gomez, S. Verma, E. J. Moussa, S. K. Wu, R. Priya, B. D. Hoffman, C. Grashoff, M. A. Schwartz, and A. S. Yap. Tension-sensitive actin assembly supports contractility at the epithelial zonula adherens. Curr. Biol. 24:1–11, 2014.
Lidke, D. S., P. Nagy, B. G. Barisas, R. Heintzmann, J. N. Post, K. A. Lidke, A. H. A. Clayton, D. J. Arndt-Jovin, and T. M. Jovin. Imaging molecular interactions in cells by dynamic and static fluorescence aniosotropy (rFLIM and emFRET). Biochem. Soc. Trans. 31:1020–1027, 2003.
Liu, Y., K. Yehl, Y. Narui, and K. Salaita. Tension sensing nanoparticles for mechano-imaging at the living/nonliving interface. J. Am. Chem. Soc. 135:5320–5323, 2013.
Marshall, B. T., M. Long, J. W. Piper, T. Yago, R. P. McEver, and C. Zhu. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190–193, 2003.
Meng, F., and F. Sachs. Visualizing dynamic cytoplasmic forces with a compliance-matched FRET sensor. J. Cell Sci. 124:261–269, 2011.
Meng, F., and F. Sachs. Orientation-based FRET sensor for real-time imaging of cellular forces. J. Cell Sci. 125:743–750, 2012.
Meng, F., T. M. Suchyna, E. Lazakovitch, R. M. Gronostajski, and F. Sachs. Real time FRET based detection of mechanical stress in cytoskeletal and extracellular matrix proteins. Cell. Mol. Bioeng. 4:148–159, 2011.
Meng, F., T. M. Suchyna, and F. Sachs. A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ. FEBS J. 275:3072–3087, 2008.
Morimatsu, M., A. H. Mekhdjian, A. S. Adhikari, and A. R. Dunn. Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett. 13:3985–3989, 2013.
Morton, P. E., and M. Parsons. Measuring FRET using time-resolved FLIM. In: Cell Migration, edited by C. M. Wells, and M. Parsons. New York: Humana Press, 2011, pp. 403–413.
Norregaard, K., L. Jauffred, K. Berg-Sørensen, and L. B. Oddershede. Optical manipulation of single molecules in the living cell. Phys. Chem. Chem. Phys. 16:12614–12624, 2014.
Oberhauser, A. F., C. Badilla-Fernandez, M. Carrion-Vazquez, and J. M. Fernandez. The mechanical hierarchies of fibronectin observed with single-molecule AFM. J. Mol. Biol. 319:433–447, 2002.
O’Conor, C. J., H. A. Leddy, H. C. Benefield, W. B. Liedtke, and F. Guilak. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc. Natl. Acad. Sci. USA 111:1316–1321, 2014.
Padilla-Parra, S., N. Audugé, H. Lalucque, J.-C. Mevel, M. Coppey-Moisan, and M. Tramier. Quantitative comparison of different fluorescent protein couples for fast FRET-FLIM acquisition. Biophys. J. 97:2368–2376, 2009.
Piston, D. W., and G.-J. Kremers. Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem. Sci. 32:407–414, 2007.
Powers, A. F., A. D. Franck, D. R. Gestaut, J. Cooper, B. Gracyzk, R. R. Wei, L. Wordeman, T. N. Davis, and C. L. Asbury. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136:865–875, 2009.
Puchner, E. M., and H. E. Gaub. Force and function: probing proteins with AFM-based force spectroscopy. Curr. Opin. Struct. Biol. 19:605–614, 2009.
Rahimzadeh, J., F. Meng, F. Sachs, J. Wang, D. Verma, and S. Z. Hua. Real-time observation of flow-induced cytoskeletal stress in living cells. Am. J. Physiol. Cell Physiol. 301:C646–C652, 2011.
Reichelt, J. Mechanotransduction of keratinocytes in culture and in the epidermis. Eur. J. Cell Biol. 86:807–816, 2007.
Rief, M., M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112, 1997.
Rief, M., M. Gautel, A. Schemmel, and H. E. Gaub. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy. Biophys. J. 75:3008–3014, 1998.
Rief, M., J. Pascual, M. Saraste, and H. E. Gaub. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J. Mol. Biol. 286:553–561, 1999.
Saeger, J., V. P. Hytönen, E. Klotzsch, and V. Vogel. GFP’s mechanical intermediate states. PLoS One 7:e46962, 2012.
Sander, J. D., and J. K. Joung. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32:347–355, 2014.
Shaner, N. C., P. A. Steinbach, and R. Y. Tsien. A guide to choosing fluorescent proteins. Nat. Methods 2:905–909, 2005.
Shcherbo, D., E. Souslova, J. Goedhart, T. Chepurnykh, A. Gaintzeva, I. Shemiakina, T. Gadella, S. Lukyanov, and D. Chudakov. Practical and reliable FRET/FLIM pair of fluorescent proteins. BMC Biotechnol. 9:24, 2009.
Shroff, H., B. M. Reinhard, M. Siu, H. Agarwal, A. Spakowitz, and J. Liphardt. Biocompatible force sensor with optical readout and dimensions of 6 nm3. Nano Lett. 5:1509–1514, 2005.
Stabley, D. R., C. Jurchenko, S. S. Marshall, and K. S. Salaita. Visualizing mechanical tension across membrane receptors with a fluorescent sensor. Nat. Methods 9:64–67, 2012.
Style, R. W., R. Boltyanskiy, G. K. German, C. Hyland, C. W. MacMinn, A. F. Mertz, L. A. Wilen, Y. Xu, and E. R. Dufresne. Traction force microscopy in physics and biology. Soft Matter 10:4047–4055, 2014.
Suhling, K., P. M. W. French, and D. Phillips. Time-resolved fluorescence microscopy. Photochem. Photobiol. Sci. 4:13–22, 2005.
Sun, Y., C. Rombola, V. Jyothikumar, and A. Periasamy. Förster resonance energy transfer microscopy and spectroscopy for localizing protein–protein interactions in living cells. Cytometry Part A 83:780–793, 2013.
Svoboda, K., C. F. Schmidt, B. J. Schnapp, and S. M. Block. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727, 1993.
Thomas, W. E., V. Vogel, and E. Sokurenko. Biophysics of catch bonds. Annu. Rev. Biophys. 37:399–416, 2008.
Van Munster, E. B., G. J. Kremers, M. J. W. Adjobo-Hermans, and T. W. J. Gadella, Jr. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. J. Microsc. 218:253–262, 2005.
Verma, D., N. Ye, F. Meng, F. Sachs, J. Rahimzadeh, and S. Z. Hua. Interplay between cytoskeletal stresses and cell adaptation under chronic flow. PLoS One 7:e44167, 2012.
Wallrabe, H., and A. Periasamy. Imaging protein molecules using FRET and FLIM microscopy. Curr. Opin. Biotechnol. 16:19–27, 2005.
Wang, X., and T. Ha. Defining single molecular forces required to activate integrin and notch signaling. Science 340:991–994, 2013.
Yao, M., B. T. Goult, H. Chen, P. Cong, M. P. Sheetz, and J. Yan. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep. 4:4610, 2014.
Zeug, A., A. Woehler, E. Neher, and E. G. Ponimaskin. Quantitative intensity-based FRET approaches—a comparative snapshot. Biophys. J. 103:1821–1827, 2012.
Zhang, Y., C. Ge, C. Zhu, and K. Salaita. DNA-based digital tension probes reveal integrin forces during early cell adhesion. Nat. Commun. 5, 2014.
Zhang, X., K. Halvorsen, C. Z. Zhang, W. P. Wong, and T. A. Springer. Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science 324:1330–1334, 2009.