How to Handle Armed Conflict Data in a Real-World Scenario?

Philosophy & Technology - Tập 34 - Trang 111-123 - 2020
Anusua Trivedi1, Kate Keator2, Michael Scholtens2, Brandon Haigood2, Rahul Dodhia1, Juan Lavista Ferres1, Ria Sankar1, Avirishu Verma1
1Microsoft, Redmond, USA
2The Carter Center, Atlanta, USA

Tóm tắt

Conflict resolution practitioners consistently struggle with access to structured armed conflict data, a dataset already rife with uncertainty, inconsistency, and politicization. Due to the lack of a standardized approach to collating conflict data, publicly available armed conflict datasets often require manipulation depending upon the needs of end users. Transformation of armed conflict data tends to be a manual, time-consuming task that nonprofits with limited budgets struggle to keep up with. In this paper, we explore the use of a deep natural language processing (NLP) model to aid the transformation of armed conflict data for conflict analysis. Our model drastically reduces the time spent on manual data transformations and improves armed conflict event classification by identifying multiple incidence types. This minimizes the human supervision cost and allows nonprofits to access a broader range of conflict data sources to reduce reporting bias. Thus, our model contributes to the incorporation of technology in the peace building and conflict resolution sector.

Tài liệu tham khảo

ACLED. (2019). https://www.acleddata.com/data/. Chiticariu, L., Krishnamurthy, R., Li, Y., Reiss, F., & Vaithyanathan, S. (2010). Domain adaptation of rule-based annotators for named-entity recognition tasks. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, EMNLP ’10, Association for Computational Linguistics, Stroudsburg, PA, USA. http://dl.acm.org/citation.cfm?id=1870658.1870756 (pp. 1002–1012). Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). Imagenet: a large-scale hierarchical image database. In CVPR09. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805. Dupuy, K., & Rustad, S. (2018). Trends in armed conflict. Google. (2019). Bert https://github.com/google-research/bert. Hitlinm P. (2015). Methodology: how crimson hexagon works. Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. arXiv:1801.06146. Hugging-Face. (2019). Bert pytorch https://github.com/huggingface/pytorch-transformers. Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). Imagenet classification with deep convolutional neural networks. In Pereira, F., Burges, C.J.C., Bottou, L., & Weinberger, K.Q. (Eds.) Advances in Neural Information Processing Systems 25. Curran Associates, Inc. http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf (pp. 1097–1105). McClosky, D., Charniak, E., & Johnson, M. (2010). Automatic domain adaptation for parsing. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Association for Computational Linguistics, Los Angeles, California. https://www.aclweb.org/anthology/N10-1004 (pp. 28–36). Michael. (2019). ICT for development project, Georgia Technology Intitute. https://mikeb.inta.gatech.edu/research (Best). Microsoft-PowerBI. (2019). Power BI. https://powerbi.microsoft.com/en-us/. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv:1301.3781. Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1532–1543). Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv:1802.05365. Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. Forthcoming. Raleigh, C., Linke, A., Hegre, H., & Karlsen, J. (2010). Introducing acled: an armed conflict location and event dataset: Special data feature. Journal of Peace Research, 47, 651–660. https://doi.org/10.1177/0022343310378914. Sherstinsky, A. (2018). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. arXiv:1808.03314. Tufekci, Z., & Wilson, C. (2012). Social media and the decision to participate in political protest: Observations from Tahrir Square. UN-Peacemaker. (2019). Mediation support digital toolkit. https://peacemaker.un.org/digitaltoolkit. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems. Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, Ł., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes, M., & Dean, J. (2016). Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv:1609.08144. Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks?. In Proceedings of the 28th Conference on Neural Information Processing Systems.