How to Get a Perfectly Random Sample from a Generic Markov Chain and Generate a Random Spanning Tree of a Directed Graph
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aldous, 1995, On simulating a Markov chain stationary distribution when transition probabilities are unknown, 72
Aldous, 1990, A random walk construction of uniform spanning trees and uniform labelled trees, SIAM J. Discrete Math., 3, 450, 10.1137/0403039
D. J. Aldous, J. A. Fill, Reversible Markov Chains and Random Walks on Graphs, http://www.stat.berkeley.edu/~aldous/book.html
Aleliunas, 1979, Random walks, universal traversal sequences, and the complexity of maze problems
Altschul, 1985, Significance of nucleotide sequence alignments: A method for random sequence permutation that preserves dinucleotide and codon usage, Mol. Biol. Evol., 2, 526
Asmussen, 1992, Stationary detection in the initial transient problem, ACM Trans. Model. Comput. Simulation, 2, 130, 10.1145/137926.137932
Baxter, 1982
Beckett, 1994, Spectral analysis for discrete longitudinal data, Adv. in Math., 103, 107, 10.1006/aima.1994.1002
Binney, 1992
Bollobás, 1979, 63
Borovkov, 1992, Stochastically recursive sequences and their generalizations, Siberian Adv. Math., 2, 16
Broder, 1989, Generating random spanning trees, Thirtieth Annual Symposium on Foundations of Computer Science, 442, 10.1109/SFCS.1989.63516
Burton, 1993, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances, Ann. Probab., 21, 1329, 10.1214/aop/1176989121
Colbourn, 1987
Colbourn, 1989, Unranking and ranking spanning trees of a graph, J. Algorithms, 10, 271, 10.1016/0196-6774(89)90016-3
Colbourn, 1988, Estimating the coefficients of the reliability polynomial, Congr. Numer., 62, 217
Colbourn, 1996, Two algorithms for unranking arborescences, J. Algorithms, 20, 268, 10.1006/jagm.1996.0014
Coppersmith, 1990, Matrix multiplication via arithmetic progressions, J. Symbolic Comput., 9, 251, 10.1016/S0747-7171(08)80013-2
Diaconis, 1988
Diaconis, 1995, What do we know about the Metropolis algorithm?
Diaconis, 1991, Geometric bounds for eigenvalues of Markov chains, Ann. Appl. Probab., 1, 36, 10.1214/aoap/1177005980
Dyer, 1994, Random walks, totally unimodular matrices, and a randomised dual simplex algorithm, Math. Programming, 64, 1, 10.1007/BF01582563
Eriksson, 1996, Strong convergence and the polygon property of 1-player games, Discrete Math., 153, 105, 10.1016/0012-365X(95)00131-F
Feder, 1992, Balanced matroids
Felsner, 1997, Markov chains for linear extensions, the two-dimensional case
de la Vega, 1977, Construction de mots circulaires aléatoires uniformément distribués, Math. Sci. Humaines, 58, 25
J. A. Fill, 1995
Fill, 1997, An interruptible algorithm for perfect sampling via Markov chains
Fortuin, 1972, On the random cluster model. I. Introduction and relation to other models, Physica, 57, 536, 10.1016/0031-8914(72)90045-6
Glynn, 1990, Bias properties of budget constrained simulations, Oper. Res., 38, 801, 10.1287/opre.38.5.801
Griffeath, 1979, 724
O. Häggström, M. N. M. van Lieshout, J. Møller, Characterisation results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes, R-96-2040, Aalborg University, 1996
Holley, 1975, Ergodic theorems for weakly interacting systems and the voter model, Ann. Probab., 3, 643, 10.1214/aop/1176996306
Kandel, 1996, Shuffling biological sequences, Discrete Appl. Math., 71, 171, 10.1016/S0166-218X(97)81456-4
W. S. Kendall, J. Møller, Perfect Metropolis–Hastings simulation of locally stable spatial point processes
W. S. Kendall, Perfect simulation for the area-interaction point process, in, Proceedings of the Symposium on Probability Towards the Year 2000, C. C. HeydeL. Accardi, World Scientific Press
Kulkarni, 1990, Generating random combinatorial objects, J. Algorithms, 11, 185, 10.1016/0196-6774(90)90002-V
Lawler, 1991
Liggett, 1985
Lovász, 1992, On the randomized complexity of volume and diameter
Luby, 1995, Markov chain algorithms for planar lattice structures (extended abstract)
Luby, 1997, Approximately counting up to four (extended abstract)
R. B. Lund, D. B. Wilson, Exact sampling algorithms for storage systems and networks
R. Lyons, Y. Peres, Probability on Trees, http://php.indiana.edu/~rdlyons/prbtree/prbtree.html
J. Møller, A note on perfect simulation of conditionally specified models, 1997
D. J. Murdoch, P. J. Green, Exact sampling from a continuous state space, 1997
Nel, 1990, Combining Monte Carlo estimates and bounds for network reliability, Networks, 20, 277, 10.1002/net.3230200303
Pemantle, 1991, Choosing a spanning tree for the integer lattice uniformly, Ann. Probab., 19, 1559, 10.1214/aop/1176990223
C. A. Phillips, 1991
Propp, 1996, Exact sampling with coupled Markov chains and applications to statistical mechanics, Rand. Struct. Algorithms, 9, 223, 10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.0.CO;2-O
Sinclair, 1993
Temperley, 1974