How to Design a Self‐Healing Polymer: General Concepts of Dynamic Covalent Bonds and Their Application for Intrinsic Healable Materials

Advanced Materials Interfaces - Tập 5 Số 17 - 2018
Jan Dahlke1,2, Stefan Zechel1,2, Martin D. Hager1,2, Ulrich S. Schubert1,2
1Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
2Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany

Tóm tắt

AbstractIn this work, the fundamental design principles of intrinsic self‐healing, polymeric materials with reversible, covalent bonds are described and summarized. The most important properties with regard to the healing ability and potential applications are discussed. A classification of synthetic strategies toward polymers as well as polymer networks and their effect on the properties is given to gain further insight into known design strategies for healable materials. In order to evaluate the advantages and disadvantages of different covalent bonding types, recent examples of intrinsic healable polymers are compared and evaluated. In addition, the unique behavior of vitrimers as a new type of polymer networks is explained. In the end, a short outlook on future work in the field of self‐healing polymers concludes this review.

Từ khóa


Tài liệu tham khảo

10.1021/acs.macromol.7b00293

10.1016/j.progpolymsci.2008.02.001

10.1039/b711716g

Hager M. D., 2016, Adv. Polym. Sci., 273, 1

10.1002/9781119075738.ch9

10.1007/12_2015_334

10.1038/nature08152

10.1146/annurev-matsci-070909-104532

10.1007/12_2015_333

10.1039/c3cs60109a

10.1016/j.eurpolymj.2014.01.026

10.1016/j.progpolymsci.2015.06.001

10.1039/C5CS00194C

10.1007/12_2015_341

10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E

10.1002/adma.201606100

10.1016/j.progpolymsci.2005.06.002

10.1021/ja2035909

10.1073/pnas.0401885101

10.1002/adma.201003036

10.1021/acs.accounts.5b00075

10.1021/ol403015s

10.1021/jacs.5b03551

10.1002/marc.201600155

10.1002/adfm.201501117

10.1002/adhm.201700523

10.1039/C7PY00074J

10.1002/macp.201100442

10.1063/1.328526

10.1038/271143a0

10.1063/1.1675789

10.1002/pola.27164

10.1021/ma801863d

10.1021/am900124c

10.1021/ma9022197

10.1021/mz200195n

10.1021/acs.macromol.5b00210

10.1021/ar300130w

10.1002/macp.201700166

10.1002/marc.201600760

10.1021/acsmacrolett.5b00018

10.1039/c1cc11928a

10.1021/acsmacrolett.7b00611

10.1039/C7CC00765E

10.1002/chem.201700333

10.1016/j.chempr.2016.09.013

10.1126/science.1065879

10.1021/ma0210675

10.1016/j.reactfunctpolym.2012.06.017

10.1039/c2py20957h

10.1002/macp.201200712

10.1002/macp.201600330

10.1021/acsami.7b06407

10.1002/marc.201700376

10.1038/ncomms13623

10.1016/j.porgcoat.2017.05.006

10.1016/j.polymer.2017.11.022

10.1002/chem.200802145

10.1002/app.45916

10.1002/adma.201306258

10.1002/adma.201201928

10.1039/c1jm13467a

10.1016/j.polymer.2012.04.016

10.1038/pj.2012.18

10.1002/marc.201000643

10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5

10.1002/macp.201600353

10.1002/app.44805

10.1039/C7PY01356F

10.1021/acs.macromol.6b01061

10.1002/anie.201104069

10.3390/gels1010058

10.1021/acs.macromol.5b00809

10.1021/acs.macromol.6b01443

10.1016/j.polymer.2016.01.050

10.1002/anie.201605311

10.1039/C7TA07076D

10.1002/adma.201505245

10.1021/acs.macromol.6b02766

10.1039/C5SM00865D

10.1002/app.44168

10.1016/j.biomaterials.2009.01.026

10.1016/j.eurpolymj.2013.03.001

10.1002/pola.28260

10.1021/ma2001492

10.1021/acsmacrolett.7b00762

10.1002/pola.28736

10.1016/j.eurpolymj.2017.10.007

10.1002/pola.27200

10.1038/am.2017.125

10.1038/ncomms4218

10.1021/ja5093437

10.1039/C7PY01655G

10.1002/adma.201601242

10.1021/ja2113257

10.1021/acs.macromol.5b01666

10.1002/anie.201002547

10.1021/jp1064165

10.1016/j.progpolymsci.2012.06.002

10.1021/cr990119u

10.1021/cm202635w

10.1016/j.polymer.2014.02.033

10.1039/C4TA00130C

10.1039/C5RA22275C

10.1039/C3PY01162C

10.1002/1521-3773(20000901)39:17<3012::AID-ANIE3012>3.0.CO;2-G

10.1021/ja306287s

10.1126/science.1212648

10.1039/C5SC02223A

10.1021/acs.macromol.6b01281

10.1021/mz500269w

10.1021/ja302894k

10.1021/mz300239f

10.1039/C6PY00752J

10.1039/c3gc41384e

10.1016/j.polymer.2016.10.013

10.1039/C7TA06397K

10.1039/C7TA06650C

10.1039/C6SM00257A

10.1038/nmat3812

10.1021/jacs.5b12531

10.1021/jacs.5b08084

10.1038/ncomms14857

10.1038/nature09963

10.1021/ma402143c

10.1038/nchem.1314

10.1038/nature06669

10.1002/masy.201050510

10.1021/ja104446r

10.1021/ma800028d

10.1007/s10853-017-1388-8

10.1002/adma.201703098

10.1002/adfm.201101574

10.1021/mz400017x

10.1021/am101012c

10.1016/j.progpolymsci.2015.04.002

10.1021/ma402471c

Product description of Surlyn on the website of dupont http://www.dupont.com/products‐and‐services/plastics‐polymers‐resins/ethylene‐copolymers/brands/surlyn‐ionomer‐resin.html(accessed: January2018).

10.1016/j.actamat.2008.08.008

Product information about the self‐healing polymers by Ruehlhttp://www.ruehl‐ag.de/index.php?id=160#c741(accessed: January2018).

10.1038/35057232

Product information about Metaprime on the Rust‐oleum websitehttps://www.rustoleum.com/product‐catalog/industrial‐brands/meta‐prime(accessed: January2018).

Press release article from Arkema about the production of Reverlinkhttps://www.arkema.com/en/media/news/news‐details/Self‐healing‐elastomer‐enters‐industrial‐production(accessed: January2018).