How the Weak Variance of Momentum Can Turn Out to be Negative

Foundations of Physics - Tập 45 - Trang 535-556 - 2015
M. R. Feyereisen1
1University of Amsterdam, Amsterdam, The Netherlands

Tóm tắt

Weak values are average quantities, therefore investigating their associated variance is crucial in understanding their place in quantum mechanics. We develop the concept of a position-postselected weak variance of momentum as cohesively as possible, building primarily on material from Moyal (Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, Cambridge, 1949) and Sonego (Found Phys 21(10):1135, 1991) . The weak variance is defined in terms of the Wigner function, using a standard construction from probability theory. We show this corresponds to a measurable quantity, which is not itself a weak value. It also leads naturally to a connection between the imaginary part of the weak value of momentum and the quantum potential. We study how the negativity of the Wigner function causes negative weak variances, and the implications this has on a class of ‘subquantum’ theories. We also discuss the role of weak variances in studying determinism, deriving the classical limit from a variational principle.

Tài liệu tham khảo

Aharonov, Y., Vaidman, L.: The two-state vector formalism of quantum mechanics. In: Time in Quantum Mechanics, pp. 369–412. Springer, Berlin (2002) Hiley, B.: Weak values: approach through the Clifford and Moyal algebras. J. Phys. 361, 012014 (2012) S. Parrott: Quantum weak values are not unique: what do they actually measure?. arXiv:0909.0295 [quant-ph] (2010) Dressel, J., Jordan, A.N.: Significance of the imaginary part of the weak value. Phys. Rev. A 85(1), 012107 (2012) Dressel, J., Agarwal, S., Jordan, A.N.: Contextual values of observables in quantum measurements. Phys. Rev. Lett. 104(24), 240401 (2010) Dressel, J., Jordan, A.N.: Contextual-value approach to the generalized measurement of observables. Phys. Rev. A 85(2), 022123 (2012) Jozsa, R.: Complex weak values in quantum measurement. Phys. Rev. A 76, 044103 (2007) Moyal, J.: Quantum mechanics as a statistical theory. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 45, pp. 99–124. Cambridge University Press, Cambridge (1949) Takabayasi, T.: The formulation of quantum mechanics in terms of ensemble in phase space. Progr. Theor. Phys 11, 341–373 (1954) Mückenheim, W., Ludwig, G., Dewdney, C., Holland, P., Kyprianidis, A., Vigier, J., Cufaro Petroni, N., Bartlett, M.S., Jaynes, E.T.: A review of extended probabilities. Phys. Rep. 133(6), 337 (1986) Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932) Groenewold, H.: On the principles of elementary quantum mechanics. Physica XII(7), 405 (1946) Zachos, C., Fairlie, D., Curtright, T.: Quantum Mechanics in Phase Space: An Overview with Selected Papers. World Scientific, Singapore (2005) Kim, Y., Noz, M.: Phase Space Picture of Quantum Mechanics: Group Theoretical Approach. World Scientific, Singapore (1991) Wiseman, H.: Grounding Bohmian mechanics in weak values and bayesianism. New J. Phys. 9, 165 (2007) de Gosson, M.A., de Gosson, S.M.: Weak values of a quantum observable and the cross-Wigner distribution. Phys. Lett. A 376(4), 293 (2012) Bartlett, M.S.: The characteristic function of a conditional statistic. J. Lond. Math. Soc. 1, 62–67 (1938) Sonego, S.: Interpretation of the hydrodynamical formalism of quantum mechanics. Found. Phys. 21(10), 1135 (1991) Madelung, E.: Quantentheorie in hydrodynamischer form. Z. Phys. A Hadrons Nucl. 40(3), 322 (1927) Bohm, D.: A suggested interpretation of the quantum theory in terms of “Hidden” variables. II. Phys. Rev. 85(2), 166–179 (1952) Bohm, D.: A suggested interpretation of the quantum theory in terms of “Hidden” variables. II. Phys. Rev. 85(2), 180 (1952) Bohm, D., Hiley, B.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (1993) Holland, P.: The Quantum Theory of Motion: An Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (1995) Aharonov, Y., Vaidman, L.: About position measurements which do not show the Bohmian particle position. http://arxiv.org/abs/quant-ph/9511005 Kaniadakis, G.: Statistical origin of quantum mechanics. Phys. A 307(1), 172–184 (2002) Cook, D.B.: Schrödinger’s Mechanics, World Scientific Lecture Notes in Physics, vol. 28. World Scientific, Singapore (1988) Kocsis, S., Braverman, B.: Observing the average trajectories of single photons in a two-slit interferometer. Science 332, 1170 (2011) Hudson, R.: When is the Wigner quasi-probability density non-negative? Rep. Math. Phys. 6(2), 249 (1974) Ramsey, N.: Thermodynamics and statistical mechanics at negative absolute temperatures. Phys. Rev. 103(1), 20 (1956) Dürr, D., Teufel, S.: Bohmian Mechanics. Springer, Berlin (2009) Berndl, K., Durr, D., Goldstein, S., Peruzzi, G., Zanghi, N.: On the global existence of Bohmian mechanics. Commun. Math. Phys. 173(3), 647–673 (1995) Teufel, S., Tumulka, R.: Simple proof for global existence of Bohmian trajectories. Commun. Mathematical Phys. 258(2), 349–365 (2005)