How proteins produce cellular membrane curvature

Nature Reviews Molecular Cell Biology - Tập 7 Số 1 - Trang 9-19 - 2006
Joshua Zimmerberg1, Michael M. Kozlov2
1Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1855 USA
2Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

Scott, I. C. & Stainier, D. Y. Developmental biology: twisting the body into shape. Nature 425, 461–463 (2003).

Thompson, D. A. W. On Growth and Form (Cambridge University Press, Cambridge, UK, 1917).

Trinkaus, J. Cells into Organs: The Forces that Shape the Embryo (Prentice-Hall, Engelwood Cliffs, 1984).

Bray, D. Cell Movements (Garland, New York, 1992).

Dvorak, A. M. & Feng, D. The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J. Histochem. Cytochem. 49, 419–432 (2001).

Rippe, B., Rosengren, B. I., Carlsson, O. & Venturoli, D. Transendothelial transport: the vesicle controversy. J. Vasc. Res. 39, 375–390 (2002).

Spivak, M. A Comprehensive Introduction to Differential Geometry (Brandeis University, Waltham,1970).

Bonifacino, J. S. & Lippincott-Schwartz, J. Coat proteins: shaping membrane transport. Nature Rev. Mol. Cell Biol. 4, 409–414 (2003).

Polishchuk, R. S. et al. Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane. J. Cell Biol. 148, 45–58 (2000).

Rothman, J. E. & Wieland, F. T. Protein sorting by transport vesicles. Science 272, 227–234 (1996).

Luini, A., Ragnini-Wilson, A., Polishchuck, R. S. & De Matteis, M. A. Large pleiomorphic traffic intermediates in the secretory pathway. Curr. Opin. Cell Biol. 17, 353–361 (2005).

Helfrich, W. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch.[C] 28, 693–703 (1973). This is the first and seminal paper that introduces the concepts of membrane bending elasticity, spontaneous curvature and the modulus of the Gaussian curvature.

Marsh, M. & McMahon, H. T. The structural era of endocytosis. Science 285, 215–220 (1999).

Kirchhausen, T. Three ways to make a vesicle. Nature Rev. Mol. Cell Biol. 1, 187–198 (2000).

Schekman, R. & Orci, L. Coat proteins and vesicle budding. Science 271, 1526–1533 (1996).

Schmid, S. L. Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu. Rev. Biochem. 66, 511–548 (1997).

Fromme, J. C. & Schekman, R. COPII-coated vesicles: flexible enough for large cargo? Curr. Opin. Cell Biol. 17, 345–352 (2005).

Malhotra, V., Serafini, T., Orci, L., Shepherd, J. C. & Rothman, J. E. Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack. Cell 58, 329–336 (1989).

Rothman, J. E. Lasker Basic Medical Research Award. The machinery and principles of vesicle transport in the cell. Nature Med. 8, 1059–1062 (2002).

Schekman, R. Lasker Basic Medical Research Award. SEC mutants and the secretory apparatus. Nature Med. 8, 1055–1058 (2002).

Sciaky, N. et al. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J. Cell Biol. 139, 1137–1155 (1997).

Gaietta, G., Redelmeier, T. E., Jackson, M. R., Tamura, R. N. & Quaranta, V. Quantitative measurement of α6β1 and α6β4 integrin internalization under cross-linking conditions: a possible role for α6 cytoplasmic domains. J. Cell Sci. 107, 3339–3349 (1994).

Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).

Schmid, S. L., McNiven, M. A. & De Camilli, P. Dynamin and its partners: a progress report. Curr. Opin. Cell Biol. 10, 504–512 (1998).

Zimmerberg, J. Are the curves in all the right places? Traffic 1, 366–368 (2000). A simplified treatment of membrane curvature.

Chernomordik, L. V. & Kozlov, M. M. Protein–lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 72, 175–207 (2003). A focused description of the role of bilayer and monolayer curvature in ubiquitous membrane fusion and fission.

Hamm, M. & Kozlov, M. Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E 3, 323–335 (2000).

Hamm, M. & Kozlov, M. Tilt model of inverted amphiphilic mesophases. Eur. Phys. J. B 6, 519–528 (1998). A paper that introduces a model for the tilt elasticity of fluid membranes.

May, S. Protein-induced bilayer deformations: the lipid tilt degree of freedom. Eur. Biophys. J. 29, 17–28 (2000).

May, S., Kozlovsky, Y., Ben-Shaul, A. & Kozlov, M. M. Tilt modulus of a lipid monolayer. Eur. Phys. J. E 14, 299–308 (2004).

Helfrich, W. in Les Houches, 1988 — Liquids and Interfaces (eds Charvolin, J., Joanny, J.-F. & Zinn-Justin, J.) 212–237 (Elsevier Science, 1990).

Kozlov, M. M., Leikin, S. L. & Markin, V. S. Elastic properties of interfaces. Elasticity moduli and spontaneous geometrical characteristics. J. Chem. Soc., Faraday Trans. 2 85, 277–292 (1989). This work introduces a model for the elasticity of strongly curved lipid monolayers.

Lipowsky, R. The morphology of lipid membranes. Curr. Opin. Struct. Biol. 5, 531–540 (1995).

Seifert, U. Configurations of fluid membranes and vesicles. Advances in Physics 46, 13–137 (1997).

Boal, D. Mechanics of the Cell (Cambridge Univesity Press, Cambridge, UK, 2002). A book that summarizes the concepts of membrane elasticity and the related phenomena.

Chen, Y. J., Zhang, P., Egelman, E. H. & Hinshaw, J. E. The stalk region of dynamin drives the constriction of dynamin tubes. Nature Struct. Mol. Biol. 11, 574–575 (2004).

Antonny, B., Gounon, P., Schekman, R. & Orci, L. Self-assembly of minimal COPII cages. EMBO Rep. 4, 419–424 (2003).

Smythe, E., Pypaert, M., Lucocq, J. & Warren, G. Formation of coated vesicles from coated pits in broken A431 cells. J. Cell Biol. 108, 843–853 (1989).

Trucco, A. et al. Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nature Cell. Biol. 6, 1071–1081 (2004).

Matsuo, H. et al. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303, 531–534 (2004).

Pomorski, T., Hrafnsdottir, S., Devaux, P. F. & van Meer, G. Lipid distribution and transport across cellular membranes. Semin. Cell Dev. Biol. 12, 139–148 (2001).

Sheetz, M. P. & Singer, S. J. Biological membranes as bilayer couples. A molecular mechanism of drug–erythrocyte interactions. Proc. Natl Acad. Sci. USA 71, 4457–4461 (1974).

Devaux, P. F. Is lipid translocation involved during endo- and exocytosis? Biochimie 82, 497–509 (2000). A review summarizing the knowledge on membrane structures that are formed owing to monolayer area asymmetry.

Templer, R. H., Seddon, J. M. & Warrender, N. A. Measuring the elastic parameters for inverse bicontinuous cubic phases. Biophys. Chem. 49, 1–12 (1994).

Schwarz, U. S. & Gompper, G. Bending frustration of lipid-water mesophases based on cubic minimal surfaces. Langmuir 17, 2084–2096 (2001).

Kozlovsky, Y., Efrat, A., Siegel, D. P. & Kozlov, M. M. Stalk phase formation: effects of dehydration and saddle splay modulus. Biophys. J. 87, 2508–2521 (2004).

Siegel, D. P. & Kozlov, M. M. The gaussian curvature elastic modulus of N-monomethylated dioleoylphos-phatidylethanolamine: relevance to membrane fusion and lipid phase behavior. Biophys. J. 87, 366–374 (2004). A paper representing a first attempt to determine the monolayer modulus of Gaussian curvature on the basis of experimental measurements.

Niggemann, G., Kummrow, M. & Helfrich, W. The bending rigidity of phosphatidylcholine bilayers. Dependence on experimental methods, sample cell sealing and temperature. J. Phys. II 5, 413–425 (1995).

Helfrich, W. in Physics of Defects (eds Balian, R., Kleman, M. & Poirier, J. P.) 715–755 (North-Holland, Amsterdam, 1981).

Kozlov, M. M., Kuzmin, P. I. & Popov, S. V. Formation of cell protrusions by an electric field: a thermodynamic analysis. Eur. Biophys. J. 21, 35–45 (1992).

Waugh, R. E. & Hochmuth, R. M. Mechanical equilibrium of thick, hollow, liquid membrane cylinders. Biophys. J. 52, 391–400 (1987).

Derenyi, I., Julicher, F. & Prost, J. Formation and interaction of membrane tubes. Phys. Rev. Lett. 88, 238101 (2002).

Bar-Ziv, R. & Moses, E. Instability and 'pearling' states produced in tubular membranes by competition of curvature and tension. Phys. Rev. Lett. 73, 1392–1395 (1994).

Tsafrir, I. et al. Pearling instabilities of membrane tubes with anchored polymers. Phys. Rev. Lett. 86, 1138–1141 (2001).

Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland, 2001).

Roux, A. et al. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. 24, 1537–1545 (2005).

Roux, A. et al. A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc. Natl Acad. Sci. USA 99, 5394–5399 (2002). A paper that directly shows membrane tubulation by a pulling force that is generated by molecular motors.

Koster, G., VanDuijn, M., Hofs, B. & Dogterom, M. Membrane tube formation from giant vesicles by dynamic association of motor proteins. Proc. Natl Acad. Sci. USA 100, 15583–15588 (2003). A paper that presents an important advance in understanding membrane-tubule formation by an ensemble of molecular motors.

Farsad, K. & De Camilli, P. Mechanisms of membrane deformation. Curr. Opin. Cell Biol. 15, 372–381 (2003).

Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192 (1995). The first demonstration of dynamin self-assembly into ring and helical structures.

Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998). This work shows that dynamin self-assembly on a membrane surface results in membrane tubulation.

Takei, K. et al. Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell 94, 131–141 (1998).

Danino, D. & Hinshaw, J. E. Dynamin family of mechanoenzymes. Curr. Opin. Cell Biol. 13, 454–460 (2001).

Hinshaw, J. E. Dynamin spirals. Curr. Opin. Struct. Biol. 9, 260–267 (1999).

Hinshaw, J. E. Dynamin and its role in membrane fission. Annu. Rev. Cell Dev. Biol. 16, 483–519 (2000).

Koenig, J. H. & Ikeda, K. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci. 9, 3844–3860 (1989).

Praefcke, G. J. & McMahon, H. T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Rev. Mol. Cell Biol. 5, 133–147 (2004).

Takei, K., McPherson, P. S., Schmid, S. L. & De Camilli, P. Tubular membrane invaginations coated by dynamin rings are induced by GTP-γ S in nerve terminals. Nature 374, 186–190 (1995). The first demonstration of dynamin tubules on membrane necks in vivo.

Kozlov, M. M. Dynamin: possible mechanism of 'pinchase' action. Biophys. J. 77, 604–616 (1999).

Kozlov, M. M. Fission of biological membranes: interplay between dynamin and lipids. Traffic 2, 51–65 (2001).

Stowell, M. H., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol. 1, 27–32 (1999).

Sever, S., Damke, H. & Schmid, S. L. Garrotes, springs, ratchets, and whips: putting dynamin models to the test. Traffic 1, 385–392 (2000).

Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004). The structure of the BAR domain clearly indicates that it could function as a scaffold to curl membranes into a tube and could differentially bind to membranes having different curvatures.

Gallop, J. L. & McMahon, H. T. BAR domains and membrane curvature: bringing your curves to the BAR. Biochem. Soc. Symp. 72, 223–231 (2005).

Zimmerberg, J. & McLaughlin, S. Membrane curvature: how BAR domains bend bilayers. Curr. Biol. 14, R250–R252 (2004).

Smith, C. J., Grigorieff, N. & Pearse, B. M. Clathrin coats at 21 Å resolution: a cellular assembly designed to recycle multiple membrane receptors. EMBO J. 17, 4943–4953 (1998).

Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579 (2004).

Nossal, R. Energetics of clathrin basket assembly. Traffic 2, 138–147 (2001). A paper estimating the rigidity of a clathrin complex. It indicates that clathrin alone cannot shape membranes.

Bi, X., Corpina, R. A. & Goldberg, J. Structure of the Sec23/24–Sar1 pre-budding complex of the COPII vesicle coat. Nature 419, 271–277 (2002).

Antonny, B., Huber, I., Paris, S., Chabre, M. & Cassel, D. Activation of ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-derived diacylglycerols. J. Biol. Chem. 272, 30848–30851 (1997).

Matsuoka, K. et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93, 263–275 (1998).

Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002). The discovery that epsin and ENTH domains drive membrane curvature.

Stahelin, R. V. et al. Contrasting membrane interaction mechanisms of AP180 N-terminal homology (ANTH) and epsin N-terminal homology (ENTH) domains. J. Biol. Chem. 278, 28993–28999 (2003).

Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193–200 (2001). The first demonstration of a role for the amphipathic helices of endophilin-1 in the tubulation of membranes.

Lee, M. C. et al. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122, 605–617 (2005).

Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563–566 (2003).

Iversen, T. G., Skretting, G., van Deurs, B. & Sandvig, K. Clathrin-coated pits with long, dynamin-wrapped necks upon expression of a clathrin antisense RNA. Proc. Natl Acad. Sci. USA 100, 4981–4983 (2003).

Campbell, N. A. & Reece, J. B. Biology (Addison-Wesley, San Francisco, 2002).

Terasaki, M., Chen, L. B. & Fujiwara, K. Microtubules and the endoplasmic reticulum are highly interdependent structures. J. Cell Biol. 103, 1557–1568 (1986).

Marsh, B. J. & Howell, K. E. The mammalian Golgi – complex debates. Nature Rev. Mol. Cell Biol. 3, 789–795 (2002).

Marsh, B. J., Volkmann, N., McIntosh, J. R. & Howell, K. E. Direct continuities between cisternae at different levels of the Golgi complex in glucose stimulated mouse islet β-cells. Proc. Natl Acad. Sci. USA 101, 5565–5570 (2004).

Mogelsvang, S., Marsh, B. J., Ladinsky, M. S. & Howell, K. E. Predicting function from structure: 3D structure studies of the mammalian Golgi complex. Traffic 5, 338–345 (2004).

Fuller, N. & Rand, R. P. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys. J. 81, 243–254 (2001).

Kooijman, E. E., Chupin, V., de Kruijff, B. & Burger, K. N. Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4, 162–174 (2003).

Kooijman, E. E. et al. Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. Biochemistry 44, 2097–2102 (2005).

Fuller, N., Benatti, C. R. & Rand, R. P. Curvature and bending constants for phosphatidylserine-containing membranes. Biophys. J. 85, 1667–1674 (2003).

Chen, Z. & Rand, R. P. The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys. J. 73, 267–276 (1997).

Szule, J. A., Fuller, N. L. & Rand, R. P. The effects of acyl chain length and saturation of diacylglycerols and phosphatidylcholines on membrane monolayer curvature. Biophys. J. 83, 977–984 (2002).

Leikin, S., Kozlov, M. M., Fuller, N. L. & Rand, R. P. Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. Biophys. J. 71, 2623–2632 (1996). This paper proposes an exact protocol for determining monolayer spontaneous curvature on the basis of X-ray examination of inverted hexagonal phases.