How neutral red modified carbon and electron flow inClostridium acetobutylicumgrown in chemostat culture at neutral pH

Oxford University Press (OUP) - Tập 16 Số 2-3 - Trang 151-162 - 1995
Laurence Girbal1, Isabel Vasconcelos1, Silvie Saint-Amans1, Philippe Soucaille1
1Département de Génie Biochimique et Alimentaire, URA-CNRS No. 544, L.A. INRA, Institut National des Sciences Appliquées, Avenue de Rangueil, F-31077 Toulouse Cedex, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hüsemann, 1988, Solventogenesis in Clostridium acetobutylicum fermentations related to carboxylic acid and proton concentration, Biotechnol. Bioeng., 32, 843, 10.1002/bit.260320702

Monot, 1984, Influence of pH and undissociated butyric acid on the production of acetone and butanol in batch cultures of Clostridium acetobutylicum, Appl. Microbiol. Biotechnol., 19, 422, 10.1007/BF00454381

Terracciano, 1986, Intracellular conditions required for initiation of solvent production by Clostridium acetobutylicum, Appl. Environ. Microbiol., 52, 86, 10.1128/AEM.52.1.86-91.1986

Meyer, 1989, Increased levels of ATP and NADH are associated with increased solvent production in continuous cultures of Clostridium acetobutylicum, Appl. Microbiol. Biotechnol., 30, 450, 10.1007/BF00263849

Meyer, 1989, Continuous and biomass recycle fermentations of Clostridium acetobutylicum, part 1: ATP supply and demand determines product selectivity, Bioproc. Eng., 4, 1, 10.1007/BF00612664

Bahl, 1982, Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat, Eur. J. Appl. Microbiol. Biotechnol., 15, 201, 10.1007/BF00499955

Roos, 1985, The effect of pH on nitrogen supply, cell lysis, and solvent production in fermentations of Clostridium acetobutylicum, Biotechnol. Bioeng., 27, 681, 10.1002/bit.260270518

Grupe, 1992, Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction, Appl. Environ. Microbiol., 58, 3896, 10.1128/AEM.58.12.3896-3902.1992

Kim, 1984, Control of carbon and electron flow in Clostridium acetobutylicum fermentations: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields, Appl. Environ. Microbiol., 48, 764, 10.1128/AEM.48.4.764-770.1984

Meyer, 1986, Carbon monoxide gasing leads to alcohol production and butyrate uptake without acetone formation in continuous cultures of Clostridium acetobutylicum, Appl. Microbiol. Biotechnol., 24, 159, 10.1007/BF01982561

Rao, 1987, Altered electron flow in continuous cultures of Clostridium acetobutylicum induced by viologen dyes, Appl. Environ. Microbiol., 53, 1232, 10.1128/AEM.53.6.1232-1235.1987

Hüsemann, 1989, Comparison between in vivo and in vitro enzyme activities in continous and batch fermentations of Clostridium acetobutylicum, Appl. Microbiol. Biotechnol., 30, 585

Junelles, 1988, Iron effect on acetone-butanol fermentation, Current Microbiol., 17, 299, 10.1007/BF01571332

Vasconcelos, 1994, Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixture of glucose and glycerol, 1443

Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3

Blusson, 1981, A new, fast, and sensitive assay for NADH-ferredoxin oxidoreductase detection in clostridia, Anal. Biochem., 110, 176, 10.1016/0003-2697(81)90132-9

Jungermann, 1969, Ferredoxin mediated hydrogen formation from NADPH in a cell-free system of Clostridium kluyveri, FEBS Lett., 3, 144, 10.1016/0014-5793(69)80119-5

Marczak, 1985, Differential levels of ferredoxin and rubredoxin in Clostridium acetobutylicum, Biochimie, 67, 241, 10.1016/S0300-9084(85)80052-3

Moulis, 1982, Characterization of the selenium-substituted 2[4Fe-4Se] ferredoxin from Clostridium pasteurianum, Biochemistry, 21, 4762, 10.1021/bi00262a037

Hongo, 1958, Change of solvent ratio by the addition of neutral red in the fermentation of pentose, Nippon Nogeikagaku Kaishi, 32, 219, 10.1271/nogeikagaku1924.32.3_219

Klingenberg, 1965, Methods of Enzymatic Analysis, 2045

London, 1966, Concentrations of nicotinamide nucleotide coenzymes in micro-organisms, J. Gen. Microbiol., 44, 241, 10.1099/00221287-44-2-241

Wulff, 1985, Methods of Enzymatic Analysis, 357

Rajgopal, 1984, Role of metal ions in triazine dye affinity chromatography: the metal mediated interaction of triazine dyes with firefly luciferase, Enz. Microb. Technol., 6, 555, 10.1016/0141-0229(84)90085-1

Raeburn, 1971, Pyruvate: ferredoxin oxidoreductase II. Characteristics of the forward and reverse reactions and properties of the enzyme, Arch. Biochem. Biophys., 146, 21, 10.1016/S0003-9861(71)80037-1

Meinecke, 1989, Purification and characterization of the pyruvate-ferredoxin oxidoreductase from Clostridium acetobutylicum, Arch. Microbiol., 152, 244, 10.1007/BF00409658

Ghosh, 1987, American Chemical Society Meeting

Chen, 1974, Purification and properties of hydrogenase from Clostridium pasteurianum W5, Biochim. Biophys. Acta, 371, 283, 10.1016/0005-2795(74)90025-7

Francis, 1990, Purification and characterization of two forms of hydrogenase isoenzyme 1 from Escherichia coli, J. Bacteriol., 172, 5750, 10.1128/jb.172.10.5750-5757.1990

Rao, 1988, Directed metabolic flow with high butanol yield and selectivity in continuous cultures of Clostridium acetobutylicum, Biotechnol. Lett., 10, 313, 10.1007/BF01026157

Doremus, 1985, Agitation and pressure effects on acetone-butanol fermentation, Biotechnol. Bioeng., 27, 852, 10.1002/bit.260270615

Yerushalmi, 1985, Effect of increased hydrogen partial pressure on acetone-butanol fermentation by Clostridium acetobutylicum, Appl. Microbiol. Biotechnol., 22, 103, 10.1007/BF00250028

Crabbendam, 1985, Metabolic and energetic aspects of the growth of Clostridium butyricum on glucose in chemostat culture, Arch. Microbiol., 142, 375, 10.1007/BF00491907

Girbal, 1994, Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool, J. Bacteriol., 176, 6433, 10.1128/jb.176.21.6433-6438.1994