How much can farmers pay for weeding robots? A Monte Carlo simulation study
Tóm tắt
This paper investigates the Maximum Acquisition Values (MAVs) of weeding robots and their determinants in both organic and conventional sugar beet farming in Germany. The MAV is defined in this paper as the price of the weeding robot that renders the same net profit as the current weeding methods. For our analysis, a Monte Carlo simulation approach is used, combined with empirical data and data collected from weeding robot companies. The results show that the MAVs of mechanical weeding robots for organic farming are substantially higher than that of spot spraying robots for conventional farming. Technology attributes are more influential than labour cost in determining the MAVs of weeding robots: in organic farming, technology attributes such as area capacity and weeding efficiency impact the MAVs of mechanical weeding robots the most; in conventional farming, supervision intensity and the robot’s ability to save herbicides are the most influential factors. The wage rate of unskilled labour, relevant for manual weeding, plays a more important role in determining the MAVs than that of skilled labour, relevant for supervision of the robot. This implies that a shortage of seasonal workers and hence increases in the wage of low-skilled labour could be important drivers of the adoption of mechanical weeding robots. Plot characteristics such as plot size and mechanisation level only have limited impacts on the MAVs.
Tài liệu tham khảo
AGROINTELLI (2023). Robotti. https://agrointelli.com/robotti/, last accessed on 25/01/2023.
AgXeed (2023). AgBot 5.115T2. https://www.agxeed.com/our-solutions/agbot-5-115t2/, last accessed on 25/01/2023.
Bawden, O., Kulk, J., Russell, R., McCool, C., English, A., Dayoub, F., Lehnert, C., & Perez, T. (2017). Robot for weed species plant-specific management. Journal of Field Robotics, 34(6), 1179–1199. https://doi.org/10.1002/rob.21727.
Bochtis, D., Benos, L., Lampridi, M., Marinoudi, V., Pearson, S., & Sørensen, C. G. (2020). Agricultural Workforce Crisis in Light of the COVID-19 pandemic. Sustainability, 12(19), 8212. https://doi.org/10.3390/su12198212.
Bullock, D. S., Boerngen, M., Tao, H., Maxwell, B., Luck, J. D., Shiratsuchi, L., Puntel, L., & Martin, N. F. (2019). The Data-Intensive Farm Management Project: Changing Agronomic Research through On‐Farm Precision Experimentation. Agronomy Journal, 111(6), 2736–2746. https://doi.org/10.2134/agronj2019.03.0165.
Carbon Robotics (2022). Autonomous Laserweeder Demo Unit. https://carbonrobotics.com/autonomous-weeder, last accessed on 20/7/2022.
Dahm, J. (2022). Germany fears seasonal labour shortages as Ukraine war rages on. https://www.euractiv.com/section/agriculture-food/news/germany-fears-seasonal-labour-shortages-as-ukraine-war-rages-on/, last accessed on 20/7/2022.
De Witte, T. (2019). Economic perspectives of small autonomous machines in arable farming. Journal für Kulturpflanzen, 71(4), 95–100. https://doi.org/10.5073/JfK.2019.04.04.
Ducksize (2022). Farming robots to help you grow sugar beets. https://www.ducksize.com/robots-for-beets, last accessed on 20/7/2022.
Ecorobotix (2022). AVO, our vision for the future: autonomous weeding (in development). https://ecorobotix.com/en/avo/, last accessed on 20/7/2022.
European Commission (2022). Farm to Fork: New rules to reduce the risk and use of pesticides in the EU (2022). https://ec.europa.eu/commission/presscorner/detail/en/qanda_22_3694, last accessed on 20/7/2022.
FarmDroid (2022). The product sheet FD20: Automatic sowing and weeding of crops. https://farmdroid.dk/en/product/, last accessed on 20/7/2022.
Farmers Weekly (2021). Solar-powered robot drills and weeds on Shropshire farm. https://www.fwi.co.uk/machinery/technology/solar-powered-robot-drills-and-weeds-on-shropshire-farm, last accessed on 20/7/2022.
Gallardo, R. K., & Sauer, J. (2018). Adoption of labor-saving Technologies in Agriculture. Annual Review of Resource Economics, 10(1), 185–206. https://doi.org/10.1146/annurev-resource-100517-023018.
Heinrichs, J., Kuhn, T., Pahmeyer, C., & Britz, W. (2021). Economic effects of plot sizes and farm-plot distances in organic and conventional farming systems: A farm-level analysis for Germany. Agricultural Systems, 187. https://doi.org/10.1016/j.agsy.2020.102992.
John Deere (2021). John Deere launches See & Spray™ Select for 400 and 600 Series Sprayers. https://www.deere.com/en/news/all-news/2021mar02-john-deere-launches-see-and-spray-select/, last accessed on 20/7/2022.
Khanna, M., Atallah, S. S., Kar, S., Sharma, B., Wu, L., Yu, C., Chowdhary, G., Soman, C., & Guan, K. (2022). Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges. Agricultural Economics. https://doi.org/10.1111/agec.12733.
Kunz, C., Weber, J., & Gerhards, R. (2015). Benefits of Precision Farming Technologies for mechanical weed control in soybean and Sugar Beet—Comparison of Precision Hoeing with Conventional Mechanical Weed Control. Agronomy, 5(2), 130–142. https://doi.org/10.3390/agronomy5020130.
KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft) (2022). Betriebsplanung Landwirtschaft 2022/23 (In English: Agricultural operational planning 2022/23) ISBN 978-3-945088-91-3. http://www.ktbl.de/shop/produktkatalog/19531
KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft) (2020). Leistungs-Kostenrechnung Pflanzenbau (In English: Performance cost accounting of crop production). https://daten.ktbl.de/dslkrpflanze/postHv.html#Ergebnis, last accessed on 20/7/2022.
KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft) (2019). Methodische Grundlagen der Datensammlung „Betriebsplanung Landwirtschaft“ (In English: Methodical bases of data collection in agricultural operational planning). https://www.ktbl.de/fileadmin/user_upload/Artikel/Datensammlung/Methodik.pdf, last accessed on 01/02/2023.
Lowenberg-DeBoer, J., Franklin, K., Behrendt, K., & Godwin, R. (2021a). Economics of autonomous equipment for arable farms. Precision Agriculture, 1–15. https://doi.org/10.1007/s11119-021-09822-x.
Lowenberg-DeBoer, J., Huang, I. Y., Grigoriadis, V., & Blackmore, S. (2020). Economics of robots and automation in field crop production. Precision Agriculture, 21(2), 278–299. https://doi.org/10.1007/s11119-019-09667-5.
Lowenberg-DeBoer, J., Behrendt, K., Ehlers, M. H., Dillon, C., Gabriel, A., Huang, I. Y., Kumwenda, I., Mark, T., Meyer‐Aurich, A., Milics, G., Olagunju, K. O., Pedersen, S. M., Shockley, J., & Rose, D. (2021b). Lessons to be learned in adoption of autonomous equipment for field crops. Applied Economic Perspectives and Policy. https://doi.org/10.1002/aepp.13177. Advance online publication.
MacLaren, C., Storkey, J., Menegat, A., Metcalfe, H., & Dehnen-Schmutz, K. (2020). An ecological future for weed science to sustain crop production and the environment. A review. Agronomy for Sustainable Development, 40(4), https://doi.org/10.1007/s13593-020-00631-6.
Montanarella, L., & Panagos, P. (2021). The relevance of sustainable soil management within the european Green Deal. Land Use Policy, 100, 104950. https://doi.org/10.1016/j.landusepol.2020.104950.
Naïo, T. (2022). Dino - Weeding robot for large-scale vegetable crops. https://www.naio-technologies.com/en/dino/, last accessed on 20/07/2022.
Olabisi, L., Wang, R., & Ligmann-Zielinska, A. (2015). Why don’t more farmers go Organic? Using a stakeholder-informed exploratory Agent-Based model to represent the Dynamics of Farming Practices in the Philippines. Land, 4(4), 979–1002. https://doi.org/10.3390/land4040979.
Pedersen, S., Fountas, S., & Blackmore, S. (2008). Agricultural Robots - Applications and Economic Perspectives. In Y. Takahashi (Ed.), Service Robot Applications IntechOpen. https://doi.org/10.5772/6048
Pedersen, S. M., Fountas, S., Have, H., & Blackmore, B. S. (2006). Agricultural robots—system analysis and economic feasibility. Precision Agriculture, 7(4), 295–308. https://doi.org/10.1007/s11119-006-9014-9.
Pérez-Ruíz, M., Slaughter, D. C., Fathallah, F. A., Gliever, C. J., & Miller, B. J. (2014). Co-robotic intra-row weed control system. Biosystems Engineering, 126, 45–55. https://doi.org/10.1016/j.biosystemseng.2014.07.009.
Rübcke von Veltheim, F., & Heise, H. (2020). The AgTech Startup Perspective to Farmers Ex Ante Acceptance process of Autonomous Field Robots. Sustainability, 12(24), 10570. https://doi.org/10.3390/su122410570.
Rübcke von Veltheim, F., Theuvsen, L., & Heise, H. (2022). German farmers’ intention to use autonomous field robots: A PLS-analysis. Precision Agriculture, 23(2), 670–697. https://doi.org/10.1007/s11119-021-09854-3.
Shockley, J., Dillon, C., Lowenberg-DeBoer, J., & Mark, T. (2021). How will regulation influence commercial viability of autonomous equipment in US production agriculture? Applied Economic Perspectives and Policy Advance online publication. https://doi.org/10.1002/aepp.13178
Shockley, J. M., Dillon, C. R., & Shearer, S. A. (2019). An economic feasibility assessment of autonomous field machinery in grain crop production. Precision Agriculture, 20(5), 1068–1085. https://doi.org/10.1007/s11119-019-09638-w.
Sørensen, C. G., Madsen, N. A., & Jacobsen, B. H. (2005). Organic farming scenarios: Operational analysis and costs of implementing innovative Technologies. Biosystems Engineering, 91(2), 127–137. https://doi.org/10.1016/j.biosystemseng.2005.03.006.
Stokstad, E. (2017). New crop pest takes Africa at lightning speed. Science (New York N Y), 356(6337), 473–474. https://doi.org/10.1126/science.356.6337.473.
Spykman, O., Gabriel, A., Ptacek, M., & Gandorfer, M. (2021). Farmers’ perspectives on field crop robots – evidence from Bavaria, Germany. Computers and Electronics in Agriculture, 186, 106176. https://doi.org/10.1016/j.compag.2021.106176.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., & Cournapeau, D., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.Nature Methods, 17,261–272. https://doi.org/10.1038/s41592-019-0686-2
Williams, C., & Horodnic, A. (2018). Tackling Undeclared Work in the Agricultural Sector: European Platform Undeclared Workhttps://ec.europa.eu/social/BlobServlet?docId=20424&langId=en, last accessed on 20/07/2022.