How microbial biofilms impact the interactions of Quantum Dots with mineral surfaces?
Tài liệu tham khảo
Aldeek, 2011, Surface-engineered quantum dots for the labeling of hydrophobic microdomains in bacterial biofilms, Biomaterials, 32, 5459, 10.1016/j.biomaterials.2011.04.019
Aldeek, 2013, Patterned hydrophobic domains in the exopolymer matrix of Shewanella oneidensis MR-1 biofilms, Appl. Environ. Microbiol., 79, 1400, 10.1128/AEM.03054-12
Allison, 2003, The biofilm matrix, Biofouling, 19, 139, 10.1080/0892701031000072190
Auffan, 2009, Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nat. Nanotechnol., 4, 634, 10.1038/nnano.2009.242
Auffan, 2009, Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro, Environ. Pollut., 157, 1127, 10.1016/j.envpol.2008.10.002
Babauta, 2012, pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer, Biotechnol. Bioeng., 109, 2651, 10.1002/bit.24538
Bae, 2008, Single-step synthesis of quantum dots with chemical composition gradients, Chem. Mater., 20, 531, 10.1021/cm070754d
Borrok, 2005, A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings, Am. J. Sci., 305, 826, 10.2475/ajs.305.6-8.826
Brayner, 2006, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano Lett., 6, 866, 10.1021/nl052326h
Breus, 2015, The effect of surface charge on nonspecific uptake and cytotoxicity of CdSe/ZnS core/shell quantum dots, Beilstein J Nanotechnol, 6, 281, 10.3762/bjnano.6.26
Brown, 2001, How minerals react with water, Science, 294, 67, 10.1126/science.1063544
Brown, 1999, Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms, Chem. Rev., 99, 77, 10.1021/cr980011z
Chen, 2000, Determination of pKa values of carboxyl groups in the N-terminal domain of rat CD2:anomalous pKa of a glutamate on the ligand-binding surface, Biochemistry, 39, 6814, 10.1021/bi992209z
Chen, 2017, The stability and removal of water-dispersed CdSe/CdS core-shell quantum dots from water, Chemosphere, 185, 926, 10.1016/j.chemosphere.2017.07.083
Choi, 2010, Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures, Water Res., 44, 6095, 10.1016/j.watres.2010.06.069
Chukavin, 2017, Study of the ZnSxSe1–x@Al2O3 nanostructures by X-ray diffraction and EXAFS spectroscopy, J. Struct. Chem., 58, 1236, 10.1134/S0022476617060233
Costerton, 1987, Bacterial biofilms in nature and disease, Annual Reviews in Microbiology, 41, 435, 10.1146/annurev.mi.41.100187.002251
Coston, 1995, Pb2+ and Zn2+ adsorption by a natural aluminum-and iron-bearing surface coating on an aquifer sand, Geochim. Cosmochim. Acta, 59, 3535, 10.1016/0016-7037(95)00231-N
Couasnon, 2019, Experimental assessment of occurrences and stability of lead-bearing minerals in bacterial biofilms, Chem. Geol., 505, 23, 10.1016/j.chemgeo.2018.11.023
Dehner, 2010, Roles of siderophores, oxalate, and ascorbate in mobilization of iron from hematite by the aerobic bacterium Pseudomonas mendocina, Appl. Environ. Microbiol., 76, 2041, 10.1128/AEM.02349-09
Derfus, 2004, Probing the cytotoxicity of semiconductor quantum dots, Nano Lett., 4, 11, 10.1021/nl0347334
Desmau, 2018, Dynamics of silver nanoparticles at the solution/biofilm/mineral interface, Environmental Science: Nano, 5, 2394
Diaz, 2013, Widespread production of extracellular superoxide by heterotrophic bacteria, Science, 340, 1223, 10.1126/science.1237331
Dranguet, 2017, Influence of chemical speciation and biofilm composition on mercury accumulation by freshwater biofilms, Environ Sci Process Impacts, 19, 38, 10.1039/C6EM00493H
Dumas, 2010, Interfacial charge transfer between CdTe quantum dots and gram negative Vs gram positive bacteria, Environmental Science & Technology, 44, 1464, 10.1021/es902898d
Fabrega, 2011, Impact of silver nanoparticles on natural marine biofilm bacteria, Chemosphere, 85, 961, 10.1016/j.chemosphere.2011.06.066
Faucher, 2018, Anal. Chim. Acta, 1028, 104, 10.1016/j.aca.2018.03.051
Flemming, 2019, Bacteria and archaea on earth and their abundance in biofilms, Nat Rev Microbiol, 17, 247, 10.1038/s41579-019-0158-9
Fulaz, 2019, Nanoparticle–biofilm interactions: the role of the EPS matrix, Trends Microbiol., 27, 915, 10.1016/j.tim.2019.07.004
Golmohamadi, 2013, The role of charge on the diffusion of solutes and nanoparticles (silicon nanocrystals, nTiO2, nAu) in a biofilm, Environ. Chem., 10, 34, 10.1071/EN12106
Ha, 2010, Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study, Geochim. Cosmochim. Acta, 74, 1, 10.1016/j.gca.2009.06.031
Hardman, 2005, A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors, Environ. Health Perspect., 114, 165, 10.1289/ehp.8284
Hidalgo, 2009, Functional tomographic fluorescence imaging of pH microenvironments in microbial biofilms by use of silica nanoparticle sensors, Appl. Environ. Microbiol., 75, 7426, 10.1128/AEM.01220-09
Jasieniak, 2009, Re-examination of the size-dependent absorption properties of CdSe quantum dots, J. Phys. Chem. C, 113, 19468, 10.1021/jp906827m
Kagan, 2016, Building devices from colloidal quantum dots, Science, 353, aac5523, 10.1126/science.aac5523
Kaur, 2014, Size tuning of MAA capped CdSe and CdSe/CdS quantum dots and their stability in different pH environments, Mater. Chem. Phys., 143, 514, 10.1016/j.matchemphys.2013.09.003
Keller, 2013, Global life cycle releases of engineered nanomaterials, J. Nanopart. Res., 15, 10.1007/s11051-013-1692-4
Kroll, 2014, Extracellular polymeric substances (EPS) of freshwater biofilms stabilize and modify CeO2 and Ag nanoparticles, PLoS One, 9, 10.1371/journal.pone.0110709
Le Bars, 2018, Drastic change in zinc speciation during anaerobic digestion and composting: instability of nanosized zinc sulfide, Environmental science & technology, 52, 12987, 10.1021/acs.est.8b02697
Lerner, 2012, The effects of biofilm on the transport of stabilized zerovalent iron nanoparticles in saturated porous media, Water Res., 46, 975, 10.1016/j.watres.2011.11.070
Li, 2012, Oxidative dissolution of polymer-coated CdSe/ZnS quantum dots under UV irradiation: mechanisms and kinetics, Environ. Pollut., 164, 259, 10.1016/j.envpol.2012.01.047
Lin, 2014, CdS quantum dots sensitized ZnO spheres via ZnS overlayer to improve efficiency for quantum dots sensitized solar cells, Ceram. Int., 40, 8157, 10.1016/j.ceramint.2014.01.011
Liu, 2012, Bacteria-mediated in vivo delivery of quantum dots into solid tumor, Biochem. Biophys. Res. Commun., 425, 769, 10.1016/j.bbrc.2012.07.150
Lowry, 2012
Lu, 2008, Mechanism of antimicrobial activity of CdTe quantum dots, Langmuir, 24, 5445, 10.1021/la704075r
Mahendra, 2008, Quantum dot weathering results in microbial toxicity, Environmental Science & Technology, 42, 9424, 10.1021/es8023385
Ménez, 2012, Life in the hydrated suboceanic mantle, Nat. Geosci., 5, 133, 10.1038/ngeo1359
Metz, 2009, Engineered nanomaterial transformation under oxidative environmental conditions: development of an in vitro biomimetic assay, Environmental science & technology, 43, 1598, 10.1021/es802217y
Mitzel, 2016, Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand, Water Res., 92, 113, 10.1016/j.watres.2016.01.026
Morel, 2003, The biogeochemical cycles of trace metals in the oceans, Science, 300, 944, 10.1126/science.1083545
Mueller, 2008, Exposure modeling of engineered nanoparticles in the environment, Environmental Science & Technology, 42, 4447, 10.1021/es7029637
Navarro, 2009, Natural organic matter-mediated phase transfer of quantum dots in the aquatic environment, Environmental Science & Technology, 43, 677, 10.1021/es8017623
Palmer, 2007, Bacterial cell attachment, the beginning of a biofilm, J. Ind. Microbiol. Biotechnol., 34, 577, 10.1007/s10295-007-0234-4
Peulen, 2011, Diffusion of nanoparticles in a biofilm, Environmental Science & Technology, 45, 3367, 10.1021/es103450g
Priadi, 2012, X-ray absorption fine structure evidence for amorphous zinc sulfide as a major zinc species in suspended matter from the Seine River downstream of Paris, Ile-de-France, France, Environmental Science & Technology, 46, 3712, 10.1021/es2041652
Ravel, 2005, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat., 12, 537, 10.1107/S0909049505012719
Ryser, 1999, Micro-spectroscopic investigation of selenium-bearing minerals from the Western US phosphate resource area, Geochem. Trans., 6, 10.1186/1467-4866-6-1
Saleh, 2015, Mechanistic lessons learned from studies of planktonic bacteria with metallic nanomaterials: implications for interactions between nanomaterials and biofilm bacteria, Front. Microbiol., 6, 677, 10.3389/fmicb.2015.00677
Slaveykova, 2009, Effect of natural organic matter and green microalga on carboxyl-polyethylene glycol coated CdSe/ZnS quantum dots stability and transformations under freshwater conditions, Environ. Pollut., 157, 3445, 10.1016/j.envpol.2009.06.017
Stewart, 2003, Diffusion in biofilms, J. Bacteriol., 185, 1485, 10.1128/JB.185.5.1485-1491.2003
Stewart, 2001, Antibiotic resistance of bacteria in biofilms, Lancet, 358, 135, 10.1016/S0140-6736(01)05321-1
Supiandi, 2019, Isotopically labeled nanoparticles at relevant concentrations: how low can we go? The case of CdSe/ZnS QDs in surface waters, Environmental Science & Technology, 53, 2586, 10.1021/acs.est.8b04096
Sutherland, 2001, The biofilm matrix – an immobilized but dynamic microbial environment, Trends Microbiol., 9, 222, 10.1016/S0966-842X(01)02012-1
Templeton, 2001, Pb(II) distributions at biofilm–metal oxide interfaces, Proc. Natl. Acad. Sci., 98, 11897, 10.1073/pnas.201150998
Templeton, 2003, Selenium speciation and partitioning within Burkholderia cepacia biofilms formed on α-Al2O3 surfaces, Geochim. Cosmochim. Acta, 67, 3547, 10.1016/S0016-7037(03)00212-6
Tourney, 2014, The role of bacterial extracellular polymeric substances in geomicrobiology, Chem. Geol., 386, 115, 10.1016/j.chemgeo.2014.08.011
Trainor, 2006, Structure and reactivity of environmental interfaces: application of grazing angle X-ray spectroscopy and long-period X-ray standing waves, J. Electron Spectrosc. Relat. Phenom., 150, 66, 10.1016/j.elspec.2005.04.011
Wan, 2017, Loss of OxyR reduces efficacy of oxygen respiration in Shewanella oneidensis, Sci. Rep., 7, 42609, 10.1038/srep42609
Wang, 2018, Dynamic probabilistic material flow analysis of nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in seven European regions, Environ. Pollut., 235, 589, 10.1016/j.envpol.2018.01.004
Wang, Y., Michel, F.M., Levard, C., Choi, Y., Eng, P.J., Brown Jr, G.E., 2013. Competitive sorption of Pb (II) and Zn (II) on polyacrylic acid-coated hydrated aluminum-oxide surfaces. Environmental science & technology 47, 12131–12139.
Wang, 2016, Effect of biofilm coatings at metal-oxide/water interfaces II: competitive sorption between Pb(II) and Zn(II) at Shewanella oneidensis/metal-oxide/water interfaces, Geochim. Cosmochim. Acta, 188, 393, 10.1016/j.gca.2016.04.054
Wang, 2016, Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and Zn(II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces, Geochim. Cosmochim. Acta, 188, 368, 10.1016/j.gca.2016.04.052
Webb, 2005, SIXpack: a graphical user interface for XAS analysis using IFEFFIT, Phys. Scr., 2005, 1011, 10.1238/Physica.Topical.115a01011
Wirth, 2012, Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver, Environmental science & technology, 46, 12687, 10.1021/es301521p
Yu, 2015, The effect of metal loading on Cd adsorption onto Shewanella oneidensis bacterial cell envelopes: the role of sulfhydryl sites, Geochim. Cosmochim. Acta, 167, 1, 10.1016/j.gca.2015.06.036
Zhang, 2008, Stability and removal of water soluble CdTe quantum dots in water, Environmental Science & Technology, 42, 321, 10.1021/es0714991
Zhang, 2012, Aggregation, dissolution, and stability of quantum dots in marine environments: importance of extracellular polymeric substances, Environmental Science & Technology, 46, 8764, 10.1021/es301000m
