How fast can glucose be infused in the perioperative setting?
Tóm tắt
How the initial infusion rate of glucose solution should be set to avoid hyperglycemia in the perioperative setting is unclear. Computer simulations were performed based on data from seven studies where the kinetics of glucose was calculated using a one-compartment model. Glucose had been infused intravenously on 44 occasions to volunteers and on 256 occasions to surgical patients at various stages of the perioperative process. The rates that yield plasma glucose concentrations of 7, 9, and 12 mmol/l were calculated and standardized to a 5 % glucose solution infused in a subject weighing 70 kg. The lowest infusion rates were found during surgery and the first hours after surgery. No more than 0.5 ml/min of glucose 5 % could be infused if plasma glucose above 7 mmol/l was not allowed, while 2 ml/min maintained a steady state concentration of 9 mmol/l. Intermediate infusion rates could be used in the preoperative period and 1–2 days after moderate-sized surgery (e.g., hysterectomy or hip replacement). Here, the half-lives averaged 30 min, which means that plasma glucose would rise by another 25 % if a control sample is taken 1 h after a continuous infusion is initiated. The highest infusion rates were found in non-surgical volunteers, where 8 ml/min could be infused before 9 mmol/l was reached. Computer simulations suggested that rates of infusion of glucose should be reduced by 50 % in the perioperative period and a further 50 % on the day of surgery in order to avoid hyperglycemia.
Tài liệu tham khảo
Basu R, Dalla Man C, Campioni M, Basu A, Klee G, Toffolo G, et al. Effects of age and sex on postprandial glucose metabolism. Differences in glucose turnover, insulin secretion, insulin action, and hepatic insulin extraction. Diabetes. 2006;55:2001–14.
Berndtson D, Olsson J, Hahn RG. Hypovolaemia after glucose-insulin infusions in volunteers. Clin Sci. 2008;115:371–8.
Borai A, Livingstone C, Ferns GAA. The biochemical assessment of insulin resistance. Ann Clin Biochem. 2007;44:324–42.
Doze VA, White PF. Effects of fluid therapy on serum glucose levels in fasted outpatients. Anesthesiology. 1987;66:223–6.
Ferranini E, Dougles JD, Cobelli C, Toffolo G, Pilo A, DeFronzo RA. Effect of insulin on the distribution and disposition of glucose in man. J Clin Invest. 1985;76:357–64.
Frisch A, Hudson M, Chandra P, et al. Prevalence and clinical outcome of hyperglycemia in the perioperative period in noncardiac surgery. Diabetes Care. 2010;33:1783–8.
Hahn RG, Hahn RG. Crystalloid fluids. In: Hahn RG, editor. Clinical Fluid Therapy in the Perioperative Setting. Cambridge: Cambridge University; 2011. p. 1–10.
Hahn RG, Ljunggren S, Larsen F, Nyström T. A simple intravenous glucose tolerance test for assessment of insulin sensitivity. Theor Biol Med Model. 2011;8:12.
Hahn RG, Nyström T, Ljunggren S. Plasma volume expansion from the intravenous glucose tolerance test before and after hip replacement surgery. Theor Biol Med Model. 2013;10:48.
Hanazaki K, Maeda H, Okabayashi T. Relationship between perioperative glycemic control and postoperative infections. World J Gastroenterol. 2009;15:4122–5.
Kalsbeek A, la Fleur S, Fliers E. Circadian control of glucose metabolism. Mol Metab. 2014;3:372–83.
Kwon S, Thompson R, Dellinger P, Yanez D, Farrohki E, Flum D. Importance of perioperative glycemic control in general surgery: a report from the surgical care and outcomes assessment program. Ann Surg. 2013;257:8–14.
Larsen FJ, Anderson M, Ekblom B, Nyström T. Cardiorespiratory fitness predicts insulin action and secretion in healthy individuals. Metabolism. 2012;61:12–6.
Lipshutz AK, Gropper MA. Perioperative glycemic control. An evidence-based review. Anesthesiology. 2009;110:408–21.
Ljunggren S, Hahn RG. Oral nutrition or water loading before hip replacement surgery; a randomized clinical trial. Trials. 2012;13:97.
Ljunggren S, Hahn RG, Nyström T. Insulin sensitivity and beta-cell function after carbohydrate oral loading in hip replacement surgery: a double-blind, randomised controlled clinical trial. Clin Nutr. 2014a;33:392–8.
Ljunggren S, Nyström T, Hahn RG. Accuracy and precision of commonly used methods for quantifying surgery-induced insulin resistance. Prospective observational study. Eur J Anaesth. 2014b;31:110–6.
Myers RE, Yamaguchi S. Nervous system effects of cardiac arrest in monkeys. Preservation of vision. Arch Neurol. 1977;34:65–74.
Sicardi Salomón Z, Rodhe P, Hahn RG. Progressive reduction of glucose clearance during surgery. Acta Anaesthesiol Scand. 2006;50:848–54.
Sieber FE, Smith DS, Traystman RJ, Wollman H. Glucose: a reevaluation of its intraoperative use. Anesthesiology. 1987;67:72–81.
Siemkowicz E. The effect of glucose upon restitution after transient cerebral ischemia: a summary. Acta Neurol Scand. 1985;71:417–27.
Sjöstrand F, Hahn RG. Validation of volume kinetic analysis of glucose 2.5 % solution given by intravenous infusion. Br J Anaesth. 2003;90:600–7.
Sjöstrand F, Hahn RG. Volume kinetics of glucose 2.5 % solution during laparoscopic cholecystectomy. Br J Anaesth. 2004;92:485–92.
Strandberg P, Hahn RG. Volume kinetics of glucose 2.5 % solution and insulin resistance after abdominal hysterectomy. Br J Anaesth. 2005;94:30–8.