Cách mà đổi mới công nghệ điện ảnh hưởng đến năng suất carbon? Một góc nhìn không gian tại Trung Quốc

Springer Science and Business Media LLC - Tập 29 - Trang 82888-82902 - 2022
Yating Deng1, Fengtao Guang1, Shuifeng Hong1, Le Wen2
1Research Centre of Resource and Environmental Economics, School of Economics and Management, China University of Geosciences, Wuhan, China
2Energy Centre, Department of Economics, The University of Auckland, Auckland, New Zealand

Tóm tắt

Đổi mới công nghệ điện được xác định là một cách hiệu quả để góp phần nâng cao năng suất carbon của Trung Quốc. Tuy nhiên, bằng chứng thực nghiệm về tác động của đổi mới công nghệ điện đối với năng suất carbon vẫn còn hạn chế. Do đó, dựa trên bộ dữ liệu bảng hàng năm của 30 tỉnh Trung Quốc từ năm 2001 đến 2019, nghiên cứu này đã khám phá xem đổi mới công nghệ điện có thúc đẩy hoặc cản trở sự cải thiện của năng suất carbon hay không, và nếu có thì bằng cách nào. Đầu tiên, năng suất carbon trong khuôn khổ yếu tố tổng thể được tính toán dựa trên chỉ số năng suất metafrontier Malmquist-Luenberger. Thứ hai, tác động của đổi mới công nghệ điện đến năng suất carbon đã được nghiên cứu bằng cách sử dụng mô hình Durbin không gian. Chúng tôi cũng đã xem xét liệu các đổi mới công nghệ điện không đồng nhất có tác động hiệp lực đến năng suất carbon hay không. Thứ ba, cơ chế ảnh hưởng của đổi mới công nghệ điện đến năng suất carbon đã được xác định. Kết quả cho thấy rằng (1) có sự khác biệt đáng chú ý về năng suất carbon giữa các tỉnh của Trung Quốc, điều này được đặc trưng bởi sự tương quan không gian. (2) Đổi mới công nghệ điện tại các địa phương có tác động thúc đẩy đến năng suất carbon tại cả tỉnh địa phương và tỉnh lân cận. Hơn nữa, tác động thúc đẩy từ đổi mới công nghệ điện đột phá mạnh hơn so với đổi mới công nghệ điện gia tăng. (3) Hiệu ứng bắt kịp và Hiệu ứng đổi mới là những kênh truyền tải quan trọng thông qua đó đổi mới công nghệ điện cải thiện năng suất carbon. Cuối cùng, các khuyến nghị chính sách được đưa ra.

Từ khóa

#đổi mới công nghệ điện #năng suất carbon #Trung Quốc #mô hình Durbin không gian #hiệu ứng hiệp lực

Tài liệu tham khảo

Abbasi KR, Adedoyin FF (2021) Do energy use and economic policy uncertainty affect CO2 emissions in China? Empirical evidence from the dynamic ARDL simulation approach. Environ Sci Pollut Res 28:23323–23335. https://doi.org/10.1007/s11356-020-12217-6 Abbasi KR, Hussain K, Abbas J, Adedoyin FF, Shaikh PA, Yousaf H, Muhammad F (2021) Analyzing the role of industrial sector’s electricity consumption, prices, and GDP: a modified empirical evidence from Pakistan. AIMS Energy 9:29–49. https://doi.org/10.3934/energy.2021003 Abbasi K R, Hussain K, Haddad A M, Salman A, Ozturk I (2022a) The role of financial development and technological innovation towards sustainable development in Pakistan: fresh insights from consumption and territory-based emissions. Technol Forecast Soc Chang 176. https://doi.org/10.1016/j.techfore.2021.121444 Abbasi KR, Shahbaz M, Zhang J, Irfan M, Alvarado R (2022b) Analyze the environmental sustainability factors of China: the role of fossil fuel energy and renewable energy. Renew Energy 187:390–402. https://doi.org/10.1016/j.renene.2022.01.066 Albino V, Ardito L, Dangelico RM, Petruzzelli AM (2014) Understanding the development trends of low-carbon energy technologies: a patent analysis. Appl Energy 135:836–854. https://doi.org/10.1016/j.apenergy.2014.08.012 Aparicio J, Barbero J, Kapelko M, Pastor JT, Zofio JL (2017) Testing the consistency and feasibility of the standard Malmquist-Luenberger index: environmental productivity in world air emissions. J Environ Manag 196:148–160. https://doi.org/10.1016/j.jenvman.2017.03.007 Bai C, Du K, Yu Y, Fen C (2019) Understanding the trend of total factor carbon productivity in the world: insights from convergence analysis. Energy Econ 81:698–708. https://doi.org/10.1016/j.eneco.2019.05.004 BP (2021) Statistical Review of World Energy. British Petroleum. Brathwaite J, Horst S, Iacobucci J (2010) Maximizing efficiency in the transition to a coal-based economy. Energy Policy 38:6084–6091. https://doi.org/10.1016/j.enpol.2010.05.064 Byun SK, Oh J-M, Xia H (2021) Incremental vs. breakthrough innovation: the role of technology spillovers. Management Sci 67:1779–1802. https://doi.org/10.1287/mnsc.2019.3507 Calel R, Dechezlepretre A (2016) Environmental policy and directed technological change: evidence from the European carbon market. Rev Econ Stat 98:173–191. https://doi.org/10.1162/REST_a_00470 Chen Y, Wu J (2022) Changes in carbon emission performance of energy-intensive industries in China. Environ Sci Pollut Res.https://doi.org/10.1007/s11356-021-18354-w Cheng Z, Li L, Liu J (2018a) Industrial structure, technical progress and carbon intensity in China’s provinces. Renew Sustain Energy Rev 81:2935–2946. https://doi.org/10.1016/j.rser.2017.06.103 Cheng Z, Li L, Liu J, Zhang H (2018b) Total-factor carbon emission efficiency of China’s provincial industrial sector and its dynamic evolution. Renew Sustain Energy Rev 94:330–339. https://doi.org/10.1016/j.rser.2018.06.015 Choi Y, Oh D-h, Zhang N (2015) Environmentally sensitive productivity growth and its decompositions in China: a metafrontier Malmquist-Luenberger productivity index approach. Empir Econ 49:1017–1043. https://doi.org/10.1007/s00181-014-0896-5 Chung YH, Fare R, Grosskopf S (1997) Productivity and undesirable outputs: a directional distance function approach. J Environ Manag 51:229–240. https://doi.org/10.1006/jema.1997.0146 Du K, Li J (2019) Towards a green world: How do green technology innovations affect total-factor carbon productivity. Energy Policy 131:240–250. https://doi.org/10.1016/j.enpol.2019.04.033 Fare R, Grosskopf S, Norris M, Zhang Z (1994) Productivity growth, technical progress, and efficiency change in industrialized countries. Am Econ Rev 84:66–83 Fare R, Grosskopf S, Pasurka CA (2001) Accounting for air pollution emissions in measures of state manufacturing productivity growth. J Reg Sci 41:381–409. https://doi.org/10.1111/0022-4146.00223 Gao W, Zhu Z (2016) The technological progress route alternative of carbon productivity promotion in China’s industrial sector. Nat Hazards 82:1803–1815. https://doi.org/10.1007/s11069-016-2271-7 Gao Y, Zhang M, Zheng J (2021) Accounting and determinants analysis of China’s provincial total factor productivity considering carbon emissions. China Econ Rev 65:01576. https://doi.org/10.1016/j.chieco.2020.101576 Gu W, Chu Z, Wang C (2020) How do different types of energy technological progress affect regional carbon intensity? A spatial panel approach. Environ Sci Pollut Res 27:44494–44509. https://doi.org/10.1007/s11356-020-10327-9 Guo F, Meng S, Sun R (2021) The evolution characteristics and influence factors of carbon productivity in China’s industrial sector: from the perspective of embodied carbon emissions. Environ Sci Pollut Res 28:50611–50622. https://doi.org/10.1007/s11356-021-14271-0 Han B (2021) Research on the influence of technological innovation on carbon productivity and countermeasures in China. Environ Sci Pollut Res 28:16880–16894. https://doi.org/10.1007/s11356-020-11890-x He R, Zhong M, Huang J (2021) Technological progress and metal resource consumption in the electricity industry—a cross-country panel threshold data analysis. Energy 231:120979. https://doi.org/10.1016/j.energy.2021.120979 Hu X, Liu C (2016) Carbon productivity: a case study in the Australian construction industry. J Clean Prod 112:2354–2362. https://doi.org/10.1016/j.jclepro.2015.10.042 Hu W, Wang D (2020) How does environmental regulation influence China’s carbon productivity? An empirical analysis based on the spatial spillover effect. J Clean Prod 257:120484. https://doi.org/10.1016/j.jclepro.2020.120484 Iftikhar Y, He W, Wang Z (2016) Energy and CO 2 emissions efficiency of major economies: a non-parametric analysis. J Clean Prod 139:779–787. https://doi.org/10.1016/j.jclepro.2016.08.072 Iqbal N, Abbasi KR, Shinwari R, Guangcai W, Ahmad M, Tang K (2021) Does exports diversification and environmental innovation achieve carbon neutrality target of OECD economies? J Environ Manage 291:112648. https://doi.org/10.1016/j.jenvman.2021.112648 Jia R, Shao S, Yang L (2021) High-speed rail and CO2 emissions in urban China: a spatial difference-in-differences approach. Energy Econ 99:105271. https://doi.org/10.1016/j.eneco.2021.105271 Jordaan SM, Romo-Rabago E, McLeary R, Reidy L, Nazari J, Herremans IM (2017) The role of energy technology innovation in reducing greenhouse gas emissions: a case study of Canada. Renew Sustain Energy Rev 78:1397–1409. https://doi.org/10.1016/j.rser.2017.05.162 Kaya Y, Yokobori K (1997) Environment, energy and economy: strategies for sustainability. United Nations University Press. Lee L-f, Yu J (2016) Identification of spatial Durbin panel models. J Appl Econ 31:133–162. https://doi.org/10.1002/jae.2450 LeSage JP, Fischer MM (2008) Spatial growth regressions: model specification, estimation and interpretation. Spat Econ Anal 3:275–304. https://doi.org/10.1080/17421770802353758 Li S, Wang S (2019) Examining the effects of socioeconomic development on China’s carbon productivity: a panel data analysis. Sci Total Environ 659:681–690. https://doi.org/10.1016/j.scitotenv.2018.12.409 Li K, Fang L, He L (2018a) How urbanization affects China’s energy efficiency: a spatial econometric analysis. J Clean Prod 200:1130–1141. https://doi.org/10.1016/j.jclepro.2018.07.234 Li W, Wang W, Wang Y, Ali M (2018b) Historical growth in total factor carbon productivity of the Chinese industry – a comprehensive analysis. J Clean Prod 170:471–485. https://doi.org/10.1016/j.jclepro.2017.09.145 Li YJ, Hou WH, Zhu WW, Li F, Liang L (2021) Provincial carbon emission performance analysis in China based on a Malmquist data envelopment analysis approach with fixed-sum undesirable outputs. Ann Oper Res 304:233–261. https://doi.org/10.1007/s10479-021-04062-8 Liang L, Hu X, Tivendale L, Liu C (2017) The log mean divisia index based carbon productivity in the Australian construction industry. Constr Econ Build 17:68–84. https://doi.org/10.5130/AJCEB.v17i3.5544 Lin B, Zhu J (2017) Energy and carbon intensity in China during the urbanization and industrialization process: a panel VAR approach. J Clean Prod 168:780–790. https://doi.org/10.1016/j.jclepro.2017.09.013 Lin B, Zhu J (2021) Impact of China’s new-type urbanization on energy intensity: a city-level analysis. Energy Econ 99:105292. https://doi.org/10.1016/j.eneco.2021.105292 Lindman A, Soderholm P (2016) Wind energy and green economy in Europe: measuring policy-induced innovation using patent data. Appl Energy 179:1351–1359. https://doi.org/10.1016/j.apenergy.2015.10.128 Long R, Gan X, Chen H, Wang J, Li Q (2020) Spatial econometric analysis of foreign direct investment and carbon productivity in China: two-tier moderating roles of industrialization development. Resour Conserv Recycl 155:104677. https://doi.org/10.1016/j.resconrec.2019.104677 Lu N, Wang W, Wang M, Zhang C, Lu H (2019) Breakthrough low-carbon technology innovation and carbon emissions: direct and spatial spillover effect. China Popul Resour Environ 29:30–39 (In Chinese) Luo Y, Lu Z, Salman M, Song S (2022) Impacts of heterogenous technological innovations on green productivity: an empirical study from 261 cities in China. J Clean Prod 334.https://doi.org/10.1016/j.jclepro.2021.130241 Luo N, Wang Y (2017) Fiscal decentralization, environmental regulation and regional eco-efficiency: based on the dynamic spatial Durbin model. China Popul Resour Environ 27:110–118 (In Chinese) Meng M, Niu D (2012) Three-dimensional decomposition models for carbon productivity. Energy 46:179–187. https://doi.org/10.1016/j.energy.2012.08.038 Nakano M, Managi S (2008) Regulatory reforms and productivity: an empirical analysis of the Japanese electricity industry. Energy Policy 36:201–209. https://doi.org/10.1016/j.enpol.2007.09.003 Oh D-h, Lee J-d (2009) A metafrontier approach for measuring Malmquist productivity index. Empir Econ 38:47–64. https://doi.org/10.1007/s00181-009-0255-0 Pan X, Li M, Wang M, Chu J, Bo H (2020) The effects of outward foreign direct investment and reverse technology spillover on China’s carbon productivity. Energy Policy 145:111730. https://doi.org/10.1016/j.enpol.2020.111730 Ren X, Wu X, Liu Y, Sun S (2021) The spatial spillover effect of environmental regulation and technological innovation on industrial carbon productivity in China: a two-dimensional structural heterogeneity analysis. Math Probl Eng 2021.https://doi.org/10.1155/2021/5613525 Song K, Bian Y, Zhu C, Nan Y (2020) Impacts of dual decentralization on green total factor productivity: evidence from China’s economic transition. Environ Sci Pollut Res 27:14070–14084. https://doi.org/10.1007/s11356-020-07953-8 Wang Z, Zhu Y (2020) Do energy technology innovations contribute to CO2 emissions abatement? A spatial perspective. Sci Total Environ 726:138574. https://doi.org/10.1016/j.scitotenv.2020.138574 Wang Z, Yang Z, Zhang Y, Yin J (2012) Energy technology patents–CO2 emissions nexus: an empirical analysis from China. Energy Policy 42:248–260. https://doi.org/10.1016/j.enpol.2011.11.082 Wang K, Xian Y, Wei Y-M, Huang Z (2016) Sources of carbon productivity change: a decomposition and disaggregation analysis based on global Luenberger productivity indicator and endogenous directional distance function. Ecol Indic 66:545–555. https://doi.org/10.1016/j.ecolind.2016.02.034 Wang H, Cui H, Zhao Q (2021a) Effect of green technology innovation on green total factor productivity in China: evidence from spatial Durbin model analysis. J Clean Prod 288:125624. https://doi.org/10.1016/j.jclepro.2020.125624 Wang Y, Yang J, Zhou M, Zhang D, Song F, Dong F, Zhu J, Liu L (2021b) Evaluating the sustainability of China’s power generation industry based on a matter-element extension model. Util Policy 69:101166. https://doi.org/10.1016/j.jup.2021.101166 Wen L, Sharp B, Sbai E (2020) Spatial effects of wind generation and its implication for wind farm investment decisions in New Zealand. Energy J 41:47–72. https://doi.org/10.5547/01956574.41.2.lwen Xu L, Fan M, Yang L, Shao S (2021) Heterogeneous green innovations and carbon emission performance: evidence at China’s city level. Energy Econ 99:105269. https://doi.org/10.1016/j.eneco.2021.105269 Yang L, Ni M (2022) Is financial development beneficial to improve the efficiency of green development? Evidence from the “Belt and Road” countries. Energy Econ 105:105734. https://doi.org/10.1016/j.eneco.2021.105734 Yang Z, Fan M, Shao S, Yang L (2017) Does carbon intensity constraint policy improve industrial green production performance in China? A quasi-DID analysis. Energy Econ 68:271–282. https://doi.org/10.1016/j.eneco.2017.10.009 Zhang J, Wu G, Zhang J (2004) The estimation of China's provincial capital stock: 1952-2000. Econ Res J :35-44. (In Chinese) Zhang J, Abbasi K R, Hussain K, Akram S, Alvarado R, Almulhim A I (2022) Another perspective towards energy consumption factors in Pakistan: fresh policy insights from novel methodological framework. Energy 249.https://doi.org/10.1016/j.energy.2022.123758 Zhao Z, Yuan T, Shi X, Zhao L (2020) Heterogeneity in the relationship between carbon emission performance and urbanization: evidence from China. Mitig Adapt Strateg Glob Chang 25:1363–1380. https://doi.org/10.1007/s11027-020-09924-3 Zhou L, Tang L (2021) Environmental regulation and the growth of the total-factor carbon productivity of China’s industries: evidence from the implementation of action plan of air pollution prevention and control. J Environ Manag 296:113078. https://doi.org/10.1016/j.jenvman.2021.113078 Zhou P, Ang BW, Han JY (2010) Total factor carbon emission performance: a Malmquist index analysis. Energy Econ 32:194–201. https://doi.org/10.1016/j.eneco.2009.10.003 Zhu J, Fan Y, Deng X, Xue L (2019) Low-carbon innovation induced by emissions trading in China. Nat Commun 10:4088. https://doi.org/10.1038/s41467-019-12213-6