How does a hypha grow? The biophysics of pressurized growth in fungi

Nature Reviews Microbiology - Tập 9 Số 7 - Trang 509-518 - 2011
Roger R. Lew1
1Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Trail, F. Fungal cannons: explosive spore discharge in the Ascomycota. FEMS Microbiol. Lett. 276, 12–18 (2007).

Yafetto, L. et al. The fastest flights in nature: high-speed spore discharge mechanisms among fungi. PLoS ONE 3, e3237 (2008).

Bastmeyer, T., Deising, H. B. & Bechinger, C. Force exertion in fungal infection. Annu. Rev. Biophys. Biomol. Struct. 31, 321–341 (2002).

Bartnicki-Garcia, S., Bracker, C. E., Gierz, G., Lopez-Franco, R. & Lu, H. Mapping the growth of fungal hyphae: orthogonal cell wall expansion during tip growth and the role of turgor. Biophys. J. 79, 2382–2390 (2000). A careful analysis of the nature of tip expansion in growing hyphae by microscopic observation of both external and internal markers. The results strongly support the idea that expansion is orthogonal. Biophysical considerations lead to the conclusion that turgor drives cell expansion.

Shaw, S. L., Dumais, J. & Long, S. R. Cell surface expansion in polarly growing root hairs of Medicago truncatula. Plant Physiol. 124, 959–970 (2000).

Reinhardt M, O. Das Wachsthum der pilzhyphen. Jahrbücher für Wissenschaftliche Botanik 23, 479–566 (1892).

Money, N. P. in The Mycota. I. Growth, Differentiation and Sexuality (eds Wessels, J. G. H. & Meinhardt, F.) 67–88 (Springer, 1994).

Money, N. P. in The Mycota. VIII. Biology of the Fungal Cell 2nd edn (eds Howard, R. J. & Gow, N. A. R.) 237–249 (Springer, 2007).

Lew, R. R. & Nasserifar, S. Transient responses during hyperosmotic shock in the filamentous fungus Neurospora crassa. Microbiology 155, 903–911 (2009).

Steudle, E., Zimmerman, U. & Lüttge, U. Effect of turgor pressure and cell size on the wall elasticity of plant cells. Plant Physiol. 59, 285–289 (1977).

Steudle, E. Zimmerman, U. & Zillikens, J. Effect of cell turgor on hydraulic conductivity and elastic modulus of Elodea leaf cells. Planta 154, 371–380 (1982).

Cosgrove, D. J. In defence of the cell volumetric elastic modulus. Plant Cell Environ. 11, 67–69 (1988).

Franks, P. J., Buckley, T. N., Shope, J. C. & Mott, K. A. Guard cell volume and pressure measured concurrently by confocal microscopy and the cell pressure probe. Plant Physiol. 125, 1577–1584 (2001).

Ortega, J. K. E., Keanini, R. G. & Manica, K. J. Pressure probe technique to study transpiration in Phycomyces sporangiophore. Plant Physiol. 87, 11–14 (1988).

Agre, P. Aquaporin water channels. Nobelprize.org [online] , (2003).

Tyerman, S. D., Bohnert, H. J., Maurel, C., Steudle, E. & Smith, J. A. C. Plant aquaporins: their molecular biology, biophysics and significance for water relations. J. Exp. Bot. 50, 1055–1071 (1999).

Tanghe, A., Van Dijck, P. & Thevelein, J. M. Why do microorganisms have aquaporins? Trends Microbiol. 14, 78–85 (2005).

Bartnicki-Garcia, S. Chitosomes: past, present and future. FEMS Yeast Res. 6, 957–965 (2006).

Money, N. P. & Harold, F. M. Extension growth of the water mold Achlya: interplay of turgor and wall strength. Proc. Natl Acad. Sci. USA 89, 4245–4249 (1992).

Lockhart, J. A. An analysis of irreversible plant cell elongation. J. Theor. Biol. 8, 264–275 (1965).

Green, P. B. Growth physics in Nitella: a method for continuous in vivo analysis of extensibility based on a micro-manometer technique for turgor pressure. Plant Physiol. 43, 1169–1184 (1968).

Zhu, G. L. & Boyer, J. S. Enlargement in Chara studies by a turgor clamp. Growth rate is not determined by turgor. Plant Physiol. 100, 2071–2080 (1992).

Proseus, T. E. & Boyer, J. S. Calcium pectate chemistry controls growth rate of Chara corallina. J. Exp. Bot. 57, 3989–4002 (2006).

Proseus, T. E. & Boyer, J. S. Tension required for pectate chemistry to control growth in Chara corallina. J. Exp. Bot. 58, 4283–4292 (2007).

Proseus, T. E. & Boyer, J. S. Calcium pectate chemistry causes growth to be stored in Chara corallina: a test of the pectate cycle. Plant Cell Environ. 31, 1147–1155 (2008).

Money, N. P. & Hill, T. W. Correlation between endoglucanase secretion and cell wall strength in oomycete hyphae: implications for growth and morphogenesis. Mycologia 89, 777–785 (1997).

Benkert, R., Obermeyer, G. & Bentrup, F.-W. The turgor pressure of growing lily pollen tubes. Protoplasma 198, 1–8 (1997).

Winship, L. J., Obermeyer, G., Geitmann, A. & Hepler, P. K. Under pressure, cell walls set the pace. Trends Plant Sci. 15, 363–369 (2010).

Zerzour, R., Kroeger, J. & Geitmann, A. Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Dev. Biol. 334, 437–446 (2009). A detailed exploration of the relationship between the mechanical properties of the cell wall and tip growth. A micro-indentation technique is used to quantify wall stiffness, thereby integrating cytomechanics with cell expansion.

Levina N. N., Lew, R. R. & Heath, I. B. Cytoskeletal regulation of ion channel distribution in the tip-growing organism Saprolegnia ferax. J. Cell Sci. 107, 127–134 (1994).

Dutta R. & Robinson, K. R. Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol. 135, 1398–1406 (2004).

Lew, R. R. Comparative analysis of Ca2+ and H+ flux magnitude and location along growing hyphae of Saprolegnia ferax and Neurospora crassa. Eur. J. Cell Biol. 78, 892–902 (1999).

Lew, R. R. Mapping fungal ion channel distributions. Fungal Genet. Biol. 24, 69–76 (1998).

Levina, N. N., Lew, R. R., Hyde, G. J. & Heath, I. B. The roles of calcium ions and plasma membrane ion channels in hyphal tip growth of Neurospora crassa. J. Cell Sci. 108, 3405–3417 (1995).

Silverman-Gavrila L. B & Lew, R. R. Calcium and tip growth in Neurospora crassa. Protoplasma 213, 203–217 (2000).

Silverman-Gavrila L. B & Lew, R. R. Calcium gradient dependence of Neurospora crassa hyphal growth. Microbiology 149, 2475–2485 (2003). A description of the important role that intracellular Ca2+ gradients have in fungal tip growth.

Silverman-Gavrila L. B & Lew, R. R. Regulation of the tip-high [Ca2+] gradient in growing hyphae of the fungus Neurospora crassa. Eur. J. Cell Biol. 80, 379–390 (2001).

Silverman-Gavrila L. B & Lew, R. R. An IP3-activated Ca2+ channel regulates fungal tip growth. J. Cell Sci. 115, 5013–5025 (2002).

Levina N. N. & Lew, R. R. The role of tip-localized mitochondria in hyphal growth. Fungal Genet. Biol. 43, 65–74 (2006).

Bowman, B. J., Abreu, S., Margoles-Clark, E., Draskovic, M. & Bowman, E. J. Role of four calcium transport proteins, encoded by nca-1, nca-2, nca-3, and cax, in maintaining intracellular calcium levels in Neurospora crassa. Eukaryot. Cell 10, 654–661 (2011).

Verdín, J., Bartnicki-Garcia, S. & Riquelme, M. Functional stratification of the Spitzenkörper of Neurospora crassa. Mol. Microbiol. 74, 1044–1053 (2009).

Riquelme, M. et al. Spitzenkörper localization and intracellular traffic of green fluorescent protein-labeled CHS-3 and CHS-6 chitin synthases in living hyphae of Neurospora crassa. Eukaryot. Cell 6, 1853–1864 (2007).

Hilfiker, S., Greengard, P. & Augustine, G. J. Coupling calcium to SNARE-mediated synaptic vesicle fusion. Nature Neurosci. 2, 104–106 (1999).

Gupta, G. D. & Heath, I. B. A tip-high gradient of a putative plasma membrane SNARE approximates the exocytotic gradient in hyphal apices of the fungus Neurospora crassa. Fungal Genet. Biol. 29, 187–199 (2000).

Gupta, G. D., Free, S. J., Levina, N. N., Keränen, S. & Heath, I. B. Two divergent plasma membrane syntaxin-like SNAREs, nsyn and nsyn2, contribute to hyphal tip growth and other developmental processes in Neurospora crassa. Fungal Genet. Biol. 40, 271–286 (2003).

Lew R. R., Levina, N. N., Walker, S. K. & Garrill A. Turgor regulation in hyphal organisms. Fungal Genet. Biol. 41, 1007–1015 (2004).

Lew R. R., Levina, N. N., Shabala, L., Anderca, M. I. & Shabala, S. N. Role of a mitogen-activated protein kinase cascade in ion flux-mediated turgor regulation in fungi. Eukaryot. Cell 5, 480–487 (2006). A suite of techniques are used to demonstrate the role of ion transport in turgor regulation, which is mediated by a MAPK cascade, in a fungus.

Lew R. R. & Nasserifar, S. Transient responses during hyperosmotic shock in the filamentous fungus Neurospora crassa. Microbiology 155, 903–911 (2009).

Lew, R. R. & Levina, N. N. Turgor regulation in the osmosensitive cut mutant of Neurospora crassa. Microbiology 153, 1530–1537 (2007).

Brewster, J. L., de Valoir, T., Dwyer, N. D., Winter, E. & Gustin, M. C. An osmosensing signal transduction pathway in yeast. Science 259, 1760–1763 (1993).

Kranz, M., Becit, E. & Hoffmann, S. Comparative genomics of the HOG-signaling system in fungi. Curr. Genet. 49, 137–151 (2006).

Maeda, T., Takekawa, M. & Saito, H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269, 554–558 (1995).

Posas F. & Saito, H. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276, 1702–1705 (1997).

Alex, L. A., Borkovich, K. A. & Simon, M. I. Hyphal development in Neurospora crassa: involvement of a two-component histidine kinase. Proc. Natl Acad. Sci. USA 93, 3416–3421 (1996).

Schumacher, M. M., Enderlin, C. S. & Selitrennikoff, C. P. The osmotic-1 locus of Neurospora crassa encodes a putative histidine kinase similar to osmosensors of bacteria and yeast. Curr. Microbiol. 34, 340–347 (1997).

Jones, C. A., Greer-Philips, S. E. & Borkovich, K. A. The response regulator RRG-1 functions upstream of a mitogen-activated protein kinase pathway impacting asexual development, female fertility, osmotic stress, and fungicide resistance in Neurospora crassa. Mol. Biol. Cell 18, 2123–2136 (2007).

Ellis, S. W., Grindle, M. & Lewis, D. H. Effect of osmotic stress on yield and polyol content of dicoarboximide-sensitive and -resistant strains on Neurospora crassa. Mycol. Res. 95, 457–464 (1991).

Youssar, L. & Avalos, J. Genetic basis of the ovc phenotype of Neurospora: identification and analysis of a 77kb deletion. Curr. Genet. 51, 19–30 (2007).

Ochiai, N. et al. Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Pest Manag. Sci. 57, 437–442 (2001).

Motoyama, T. et al. An Os-1 family histidine kinase from a filamentous fungus confers fungicide-sensitivity to yeast. Curr. Genet. 47, 298–306 (2005).

Fujimura, M. et al. Sensitivity to phenylpyrrole fungicides and abnormal glycerol accumulation in Os and Cut mutant strains of Neurospora crassa. J. Pesticide Sci. 25, 31–36 (2000).

Lew, R. R. Turgor and net ion flux responses to activation of the osmotic MAP kinase cascade by fludioxonil in the filamentous fungus Neurospora crassa. Fungal Genet. Biol. 47, 721–726 (2010).

Colot, H. V. et al. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc. Natl Acad. Sci. USA. 103, 10352–10357 (2006).

Lew R. R., Abbas, Z., Anderca, M. I. & Free, S. J. Phenotype of a mechanosensitive channel mutant, mid-1, in a filamentous fungus, Neurospora crassa. Eukaryot. Cell 7, 647–655 (2008).

Lew R. R., Kapishon, V. Ptk2 contributes to osmoadaptation in the filamentous fungus Neurospora crassa. Fungal Genet. Biol. 46, 949–955 (2009).

Kaminskyj, S. G. W., Garrill, A. & Heath, I. B. The relation between turgor and tip growth in Saprolegnia ferax: turgor is necessary, but not sufficient to explain apical extension rates. Exp. Mycol. 16, 64–75 (1992).

Harold, R. L., Money, N. P. & Harold, F. M. Growth and morphogenesis in Saprolegnia ferax: is turgor required? Protoplasma 191, 105–114 (1996).

Walker, S. K., Chitcholtan, K., Yu, Y.-P., Christenhusz, G. M. & Garrill, A. Invasive hyphal growth: an F-actin depleted zone is associated with invasive hyphae of the oomycetes Achlya bisexualis and Phytophthora cinnamomi. Fungal Genet. Biol. 43, 357–365 (2006).

Emerson, S. Slime, a plasmodial variant of Neurospora crassa. Genetica 34, 162–182 (1963).

Perkins, D. D., Radford, A., Newmeyer, D. & Björkman M. Chromosomal loci of Neurospora crassa. Microbiol. Rev. 46, 426–570 (1982).

Leal-Morales, C. A. & Ruiz-Herrera, J. Alterations in the biosynthesis of chitin and glucan in the slime mutant of Neurospora crassa. Exp. Mycol. 9, 28–38 (1985).

Bartnicki-Garcia, S., Bracker, C. E., Lippman, E. & Ruiz-Herrera, J. Chitosomes from the wall-less “slime” mutant of Neurospora crassa. Arch. Microbiol. 139, 105–112 (1984).

Heath, I. B. & Steinberg G. Mechanisms of hyphal tip growth: tube dwelling amebae revisited. Fungal Genet. Biol. 28, 79–93 (1999). An alternative to a simple version of turgor-driven growth, emphasizing the role of the protoplast within the cell wall.

Lew, R. R. Mass flow and pressure-driven hyphal extension in Neurospora crassa. Microbiology 151, 2685–2692 (2005). The direct verification of mass flow in hyphal networks, and details of the magnitude of pressure gradients that are required to cause mass flow in a low-Reynolds-number environment.

Robertson, N. F. & Rizvi, S. R. H. Some observations on the water-relations of the hyphae of Neurospora crassa. Ann. Bot. 32, 279–291 (1968).

Money, N. P. Measurement of hyphal turgor. Exp. Mycol. 14, 416–425 (1990). Measurement of turgor of the oomycete S. ferax using a variety of techniques. The methods would be the same for fungi. This article gives a good introduction to the thermodynamics of water potentials, experimental methodologies and experimental pitfalls.

Ng, S. K., Liu, F., Lai, J., Low, W. & Jedd. G. A tether for Woronin body inheritance is associated with evolutionary variation in organelle positioning. PLoS Genet. 6, e1000521 (2009).

Plamann, M. Cytoplasmic streaming in Neurospora: disperse the plug to increase the flow? PLoS Genet. 5, e1000526 (2009).

Heaton, K. L. M., López, E., Maini, P. K., Fricker, M. D. & Jones, N. S. Growth-induced mass flows in fungal networks. Proc. R. Soc. B 277, 3263–3274 (2010).

Sugden, K. E. P., Evans, M. R., Poon, W. C. K. & Read, N. D. Model of hyphal tip growth involving microtubule-based transport. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75, 031909 (2007).

Boudaoud, A. Growth of walled cells: from shells to vesicles. Phys. Rev. Lett. 91, 018104 (2003).

Freitag, M., Hickey, P. C., Raju, N. B., Selker, E. U. & Read, N. D. GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet. Biol. 41, 897–910 (2004).

Nelson, G. et al. Calcium measurement in living filamentous fungi expressing codon-optimized aequorin. Mol. Microbiol. 52, 1437–1450 (2004).

Hickey, P. C., Swift, S. M., Roca, M. G. & Read, N. D. Live-cell imaging of filamentous fungi using vital fluorescent dyes. Methods Microbiol. 34, 63–87 (2005).

Virag, A. & Griffiths, A. J. A mutation in the Neurospora crassa actin gene results in multiple defects in tip growth and branching. Fungal Genet. Biol. 41, 213–225 (2004).

Lee, I. H., Kumar, S. & Plamann, M. Null mutants of the Neurospora actin-related protein 1 pointed-end complex show distinct phenotypes. Mol. Biol. Cell 12, 2195–2206 (2001).

Riquelme, M., Roberson, R. W., McDaniel, D. P. & Bartnicki-Garcia S. The effects of ropy-1 mutation on cytoplasmic organization and intracellular motility in mature hyphae of Neurospora crassa. Fungal Genet. Biol. 37, 171–179 (2002).

Mourino-Perez, R. R., Roberson, R. W. & Bartnicki-Garcia, S. Microtubule dynamics and organization during hyphal growth and branching in Neurospora crassa. Fungal Genet. Biol. 43, 389–400 (2006).

Ramos-Garcia, S. L., Roberson, R. W., Freitag, M., Bartnicki-Garcia, S. & Mourino-Perez, R. R. Cytoplasmic bulk flow propels nuclei in mature hyphae of Neurospora crassa. Eukaryot. Cell 8, 1880–1890 (2009).

Roca, M. G., Kuo, H.-C., Lichius, A., Freitag, M. & Read, N. D. Nuclear dynamics, mitosis, and the cytoskeleton during the early stages of colony initiation in Neurospora crassa. Eukaryot. Cell 9, 1171–1183 (2010).

Tucker, E. B. Cytoplasmic streaming does not drive intercellular passage in staminal hairs of Setcreasea purpurea. Protoplasma 137, 140–144 (1987).

Suei, S. & Garrill, A. An F-actin-depleted zone is present at the hyphal tip of invasive hyphae of Neurospora crassa. Protoplasma 232, 165–172 (2008).

Delgado-Álvarez, D. L. et al. Visualization of F-actin localization and dynamics with live cell markers in Neurospora crassa. Fungal Genet. Biol. 47, 573–586 (2010).

Harris, S. D. et al. Polarisome meets Spitzenkörper: microscopy, genetics, and genomics converge. Eukaryot. Cell 4, 225–229 (2005).

Gow, N. A. R. Transhyphal electrical currents in fungi. J. Gen. Microbiol. 130, 3313–3318 (1984).

McGillviray, A. M. & Gow, N. A. R. The transhyphal electrical current of Neurospora crassa is carried principally by protons. J. Gen. Microbiol. 133, 2875–2881 (1987).

Takeuchi, Y., Schmid, J., Caldwell, J. H. & Harold, F. M. Transcellular ion currents and extension of Neurospors crassa hyphae. J. Membr. Biol. 101, 33–41 (1988).

McGillviray, A. M. & Gow, N. A. R. Applied electrical fields polarize the growth of mycelial fungi. J. Gen. Microbiol. 132, 2515–2525 (1986).

Lever, M. C. et al. pH and Ca2+ dependent galvanotropism of filamentous fungi: implications and mechanisms. Mycol. Res. 98, 301–306 (1994).

Burstaller, W. Transport of small ions and molecules through the plasma membrane of filamentous fungi. Curr. Rev. Microbiol. 23, 1–46 (1997).

Riquelme, M., Freitag, M., León-Hing, E. S. & Bowman, B. Live imaging of the secretory pathway in hyphae of Neurospora crassa. Fungal Genet. Newsl. 52 (Suppl.), 53 (2005).

Slayman, C. L. & Slaymen, C. W. Measurement of membrane potentials in Neurospora. Science 136, 876–877 (1962).

Potapova, T. V., Aslanidi, K. B., Belozerskaya, T. A. & Levina, N. N. Transcellular ionic currents studied by intracellular potential recordings in Neurospora crassa hyphae. Transfer of energy from proximal to apical cells. FEBS Lett. 241, 173–176 (1988).

Zalokar, M. Growth and differentiation of Neurospora crassa. Am. J. Bot. 46, 602–610 (1959).

Brody, J. P., Yager, P., Goldstein, R. E. & Austin, R. H. Biotechnology at low Reynolds number. Biophys. J. 71, 3430–3441 (1996). Microfluidics at low Reynolds number is explored in detail from a physical veiwpoint, pertinent to the nature of mass flow in hyphae.

Berg, H. C. & Purcell, E. M. Physics of chemoreception. Biophys. J. 20, 193–219 (1977).

Short, M. B. et al. Flows driven by flagella of multicellular organisms enhance long-range molecular transport. Proc. Natl Acad. Sci. USA 103, 8315–8319 (2006).

Goldstein, R. E., Tuval, I. & van de Meent, J.-W. Microfluidics of cytoplasmic streaming and its implications for intracellular transport. Proc. Natl Acad. Sci. USA 105, 3663–3667 (2008).

Van de Meent, J.-W., Tuval, I. & Goldstein, R. E. Nature's microfluidic transporter: rotational cytoplasmic streaming at high Péclet numbers. Phys. Rev. Lett. 101, 178102 (2008).

Cosgrove, D. J. Analysis of the dynamic and steady-state responses of growth rate and turgor pressure to changes in cell parameters. Plant Physiol. 68, 1439–1446 (1981). A detailed analysis of the nature of the interplay between turgor and cell expansion during cell growth. This analysis is pertinent to any walled cells that rely on turgor for growth.

Bok, J. W. et al. Structure and function analysis of the calcium-related gene spray in Neurospora crassa. Fungal Genet. Biol. 32, 145–158 (2001).

Sanders, D., Slayman, C. L. & Pall, M. L. Stoichiometry of H+/amino acid cotransport in Neurospora crassa revealed by current-voltage analysis. Biochim. Biophys. Acta 735, 67–76 (1983).

Schloemer, R. H. & Garrett, R. H. Nitrate transport system in Neuropora crassa. J. Bacteriol. 118, 259–269 (1974).

Blatt, M. R., Maurousset, L. & Meharg, A. A. High-affinity NO3−-H+ cotransport in the fungus Neurospora: induction and control by pH and membrane voltage. J. Membr. Biol. 160, 59–76 (1997).

Versaw, W. K. & Metzenberg, R. L. Repressible cation–phosphate symporter in Neurospora crassa. Proc. Natl Acad. Sci. USA 92, 3884–3887 (1995).

Slayman, C. L. & Slayman, C. W. Depolarization of the plasma membrane of Neurospora during active transport of glucose: evidence for a proton-dependent cotransport system. Proc. Natl Acad. Sci. USA 71, 1935–1939 (1974).