How do the micropores of carbon xerogels influence their electrochemical behavior as anodes for lithium-ion batteries?
Tài liệu tham khảo
Nagaura, 1990, Lithium Ion rechargeable battery, Prog. Batter. Sol. Cells., 9, 209
Buiel, 1999, Li-insertion in hard carbon anode materials for Li-ion batteries, Electrochim. Acta, 45, 121, 10.1016/S0013-4686(99)00198-X
Fujimoto, 2010, The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors, J. Power Sources, 195, 7452, 10.1016/j.jpowsour.2010.05.041
Ni, 2013, A high-performance hard carbon for Li-ion batteries and supercapacitors application, J. Power Sources, 223, 306, 10.1016/j.jpowsour.2012.09.047
Piedboeuf, 2016, Carbon xerogels as model materials: toward a relationship between pore texture and electrochemical behavior as anodes for lithium-ion batteries, J. Mater. Sci., 51, 4358, 10.1007/s10853-016-9748-3
Job, 2004, Porous carbon xerogels with texture tailored by pH control during sol–gel process, Carbon N. Y., 42, 619, 10.1016/j.carbon.2003.12.072
Rey-Raap, 2016, Aqueous and organic inks of carbon xerogels as models for studying the role of porosity in lithium-ion battery electrodes, Mater. Des., 109, 282, 10.1016/j.matdes.2016.07.007
Contreras, 2010, A comparison of physical activation of carbon xerogels with carbon dioxide with chemical activation using hydroxides, Carbon N. Y., 48, 3157, 10.1016/j.carbon.2010.04.054
Yang, 2006, Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: effect of the zeolite template and nitrogen doping, J. Phys. Chem. B, 110, 18424, 10.1021/jp0639849
Zhu, 2012, An activated microporous carbon prepared from phenol-melamine-formaldehyde resin for lithium ion battery anode, Mater. Res. Bull., 47, 2045, 10.1016/j.materresbull.2012.04.003
Nian-Ping, 2013, Effect of carbon aerogel activation on electrode lithium insertion performance, Acta Physico-Chemica Sin., 29, 966, 10.3866/PKU.WHXB201302281
Liu, 2014, From melamine-resorcinol-formaldehyde to nitrogen-doped carbon xerogels with micro- and meso-pores for lithium batteries, J. Mater. Chem. A., 2, 14429, 10.1039/C4TA02928C
Piedboeuf, 2015, Influence of the textural parameters of resorcinol–formaldehyde dry polymers and carbon xerogels on particle sizes upon mechanical milling, Colloids Surfaces A Physicochem. Eng. Asp., 471, 124, 10.1016/j.colsurfa.2015.02.014
Thommes, 2015, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87, 1051, 10.1515/pac-2014-1117
Magee, 1995, Evaluation of the external surface area of carbon black by nitrogen adsorption, Rubber Chem. Technol., 68, 590, 10.5254/1.3538760
Tarazona, 1984, A density functional theory of melting, Mol. Phys., 52, 81, 10.1080/00268978400101071
Tarazona, 1985, Free-energy density functional for hard spheres, Phys. Rev., 31, 2672, 10.1103/PhysRevA.31.2672
Tarazona, 1987, Phase equilibria of fluids interfaces and confined fluids: non-local versus local density functionals, Mol. Phys., 60, 573, 10.1080/00268978700100381
Olivier, 1995, Modeling physical adsorption on porous and nonporous solids using density functional theory, J. Porous Mater., 2, 9, 10.1007/BF00486565
Maddox, 1997, Characterization of MCM-41 using molecular simulation: heterogeneity effects, Langmuir, 13, 1737, 10.1021/la961068o
Balzer, 2016, Deformation of microporous carbons during N2, Ar, and CO2 adsorption: insight from the density functional theory, Langmuir, 32, 8265, 10.1021/acs.langmuir.6b02036
Washburn, 1921, Note on a method of determining the distribution of pore sizes in a porous material, Proc. Natl. Acad. Sci. Unit. States Am., 7, 115, 10.1073/pnas.7.4.115
Antonio, 2016, Coupling CH4 pyrolysis with CO2 activation via reverse Boudouard reaction in the presence of O2 through a multifunctional catalyst Ni-V-Li/Al2O3, J. CO2 Util., 16, 458, 10.1016/j.jcou.2016.10.011