How critical fluctuations influence adsorption properties of a van der Waals fluid onto a spherical colloidal particle

Theoretical Chemistry Accounts - Tập 124 - Trang 279-294 - 2009
Shiqi Zhou1,2
1School of Physics Science and Technology, Central South University, Changsha, China
2State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China

Tóm tắt

A recently proposed 3rd-order thermodynamic perturbation theory (TPT) is extended to its 5th-order version and non-uniform counterpart by supplementing with density functional theory (DFT) and a number of ansatzs for a bulk 2nd-order direct correlation function (DCF). Employment of the ansatzs DCF enables the resultant non-uniform formalism devoid of any adjustable parameter and free from numerically solving an Ornstein–Zernike integral equation theory. Density profiles calculated by the present non-uniform formalism for a hard core attractive Yukawa (HCAY) fluid near a spherical geometry are favorably compared with corresponding simulation data available in literature, and are more accurate than those based on a previous 3rd + 2nd-order perturbation DFT. The non-uniform 5th-order TPT is employed to investigate adsorption of the HCAY fluid onto a colloidal particle; it is disclosed that a depletion adsorption can be induced when the coexistence bulk fluid is situated in neighborhood of a critical point or near a bulk vapor–liquid coexistence gaseous phase or liquid phase density. A physical interpretation is given for such depletion adsorption and for its connection with parameters of the potential under consideration, which is ascribed to critical density fluctuations existing within a wide region of the bulk diagram. For a large spherical external potential inducing wetting transition, it is found that only round wetting transition is found instead of 1st-order pre-wetting transition in the case of a planar wall external potential, and the wetting transition temperature increases relative to that for the planar wall external potential. The present theoretical results for wetting transitions are supported by previous investigation based on thermodynamic considerations and a phenomenological Landau mean field theory, and are also in conformity with the present qualitative physical interpretation.

Tài liệu tham khảo

Adib AB (2007) Phys Rev E 75:061204, and references therein Zhou S (2007) J Chem Phys 127:084512, and references therein Lu M, Bevan MA, Ford DM (2007) J Chem Phys 127:164709, and references therein Punnathanam S, Corti DS (2007) Phys Rev E 69:036105 Siderius DW, Corti DS (2007) Phys Rev E 75:011108 Zhou S (2006) Phys Rev E 74:031119 Zhou S (2006) J Chem Phys 125:144518 Zhou S (2007) J Phys Chem B 111:10736 Zwanzig RW (1954) J Chem Phys 22:1420 Barker JA, Henderson D (1976) Rev Mod Phys 48:587 Barker JA, Henderson D (1967) J Chem Phys 47:2856 Zhou S (2003) Commun Theor Phys (Beijing, China) 40:721 Zhou S, Jamnik A (2005) J Chem Phys 122:064503 Carnhan NF, Starling KE (1969) J Chem Phys 51:635 Henderson D (1992) Fundamentals of inhomogeneous fluids. Marcel Dekker, New York Nordholm S, Johnson M, Freasier BC (1980) Aust J Chem 33:2139 Johnson M, Nordholm S (1981) J Chem Phys 75:1953 Tarazona P (1985) Phys Rev A 31:2672 Curtin WA, Ashcroft NW (1985) Phys Rev A 32:2909 Rosenfeld Y (1989) Phys Rev Lett 63:980 Zhou S (1999) J Chem Phys 110:2140 Greberg H, Paolini GV, Satherley J, Penfold R, Nordholm S (2001) J. Colloid Interface Sci 235:334 Patra CN (1999) J Chem Phys 111:9832 Kim SC, Suh SH, Lee CH, Lee H (1999) J Korean Phys Soc 35:350 Patra CN (1999) J Chem Phys 111:6573 Zhou S (2001) Phys Rev E 63:061206 Zhou S (2002) New J Phys 4:36 Götze IO, Archer AJ, Likos CN (2006) J Chem Phys 124:084901, and reference therein Tang Z, Scriven LE, Davis HT (1991) J Chem Phys 95:2659 Kol A, Laird BB (1997) Mol Phys 90:951 Sweatman MB (2001) Phys Rev E 63:031102 Kim S-C, Lee SH (2004) J Phys Condens Matter 16:6365 Thiele E (1963) J Chem Phys 39:474 Wertheim MS (1963) Phys Rev Lett 19:321 Zhou S (2003) Phys Lett A 319:279 Henderson JR (1991) In: Henderson D (ed) Fundamentals of inhomogeneous fluids. Marcel Dekker, New York, p 23 Zhou S (2006) J Colloid Interface Sci 298:31 Percus JK (1964) In: Frisch HL, Lebowitz AL (eds) The equilibrium theory of classical fluids. Benjamin, New York, p 113 Zhou S, Jamnik A (2006) Phys Rev E 73:011202 Ancilotto F, Toigo F (2000) J Chem Phys 112:4768 Sukhatme KG, Rutledge JE, Taborek P (1998) Phys Rev Lett 80:129 Holyst R, Poniewierski A (1987) Phys Rev B 36:5628 Marconi UMB (1988) Phys Rev A 38:6267 Mognetti BM, Oettel M, Yelash L, Virnau P, Paul W, Binder K (2008) Phys Rev E 77:041506 Kim S-C, Suh S-H, Seong B-S (2007) J Chem Phys 127:114903 Chakrabarti J, Chakrabarti S, Löwen H (2006) J Phys Condens Matter 18:L81 Abbas S, Lodge TP (2007) Phys Rev Lett 99:137802 Qin Y, Fichthorn KA (2007) J Chem Phys 127:144911 Dahirel V, Jardat M, Dufrêche J-F, Turq P (2007) J Chem Phys 127:095101 Domínguez A, Oettel M, Dietrich S (2007) J Chem Phys 127:204706 Dominguez A, Frydel D, Oettel M (2008) Phys Rev E 77:020401 Lomba E, Almarza NG, Martín C, McBride C (2007) J Chem Phys 126:244510 Lee J, Popov YO, Fredrickson GH (2008) J Chem Phys 128:224908 Orea P (2005) J Chem Phys 123:144704 Orea P (2009) J Chem Phys 130:104703 Liétor-Santos JJ, Chávez-Páez M, Márquez M, Fernández-Nieves A, Medina-Noyola M (2007) Phys Rev E 76:050403 Ramiro-Manzano F, Bonet E, Rodriguez I, Meseguer F (2007) Phys Rev E 76:050401 Merabia S, Pagonabarraga I (2007) J Chem Phys 127:054903 Cappallo N, Lapointe C, Reich DH, Leheny RL (2007) Phys Rev E 76:031505