How critical fluctuations influence adsorption properties of a van der Waals fluid onto a spherical colloidal particle
Tóm tắt
A recently proposed 3rd-order thermodynamic perturbation theory (TPT) is extended to its 5th-order version and non-uniform counterpart by supplementing with density functional theory (DFT) and a number of ansatzs for a bulk 2nd-order direct correlation function (DCF). Employment of the ansatzs DCF enables the resultant non-uniform formalism devoid of any adjustable parameter and free from numerically solving an Ornstein–Zernike integral equation theory. Density profiles calculated by the present non-uniform formalism for a hard core attractive Yukawa (HCAY) fluid near a spherical geometry are favorably compared with corresponding simulation data available in literature, and are more accurate than those based on a previous 3rd + 2nd-order perturbation DFT. The non-uniform 5th-order TPT is employed to investigate adsorption of the HCAY fluid onto a colloidal particle; it is disclosed that a depletion adsorption can be induced when the coexistence bulk fluid is situated in neighborhood of a critical point or near a bulk vapor–liquid coexistence gaseous phase or liquid phase density. A physical interpretation is given for such depletion adsorption and for its connection with parameters of the potential under consideration, which is ascribed to critical density fluctuations existing within a wide region of the bulk diagram. For a large spherical external potential inducing wetting transition, it is found that only round wetting transition is found instead of 1st-order pre-wetting transition in the case of a planar wall external potential, and the wetting transition temperature increases relative to that for the planar wall external potential. The present theoretical results for wetting transitions are supported by previous investigation based on thermodynamic considerations and a phenomenological Landau mean field theory, and are also in conformity with the present qualitative physical interpretation.
Tài liệu tham khảo
Adib AB (2007) Phys Rev E 75:061204, and references therein
Zhou S (2007) J Chem Phys 127:084512, and references therein
Lu M, Bevan MA, Ford DM (2007) J Chem Phys 127:164709, and references therein
Punnathanam S, Corti DS (2007) Phys Rev E 69:036105
Siderius DW, Corti DS (2007) Phys Rev E 75:011108
Zhou S (2006) Phys Rev E 74:031119
Zhou S (2006) J Chem Phys 125:144518
Zhou S (2007) J Phys Chem B 111:10736
Zwanzig RW (1954) J Chem Phys 22:1420
Barker JA, Henderson D (1976) Rev Mod Phys 48:587
Barker JA, Henderson D (1967) J Chem Phys 47:2856
Zhou S (2003) Commun Theor Phys (Beijing, China) 40:721
Zhou S, Jamnik A (2005) J Chem Phys 122:064503
Carnhan NF, Starling KE (1969) J Chem Phys 51:635
Henderson D (1992) Fundamentals of inhomogeneous fluids. Marcel Dekker, New York
Nordholm S, Johnson M, Freasier BC (1980) Aust J Chem 33:2139
Johnson M, Nordholm S (1981) J Chem Phys 75:1953
Tarazona P (1985) Phys Rev A 31:2672
Curtin WA, Ashcroft NW (1985) Phys Rev A 32:2909
Rosenfeld Y (1989) Phys Rev Lett 63:980
Zhou S (1999) J Chem Phys 110:2140
Greberg H, Paolini GV, Satherley J, Penfold R, Nordholm S (2001) J. Colloid Interface Sci 235:334
Patra CN (1999) J Chem Phys 111:9832
Kim SC, Suh SH, Lee CH, Lee H (1999) J Korean Phys Soc 35:350
Patra CN (1999) J Chem Phys 111:6573
Zhou S (2001) Phys Rev E 63:061206
Zhou S (2002) New J Phys 4:36
Götze IO, Archer AJ, Likos CN (2006) J Chem Phys 124:084901, and reference therein
Tang Z, Scriven LE, Davis HT (1991) J Chem Phys 95:2659
Kol A, Laird BB (1997) Mol Phys 90:951
Sweatman MB (2001) Phys Rev E 63:031102
Kim S-C, Lee SH (2004) J Phys Condens Matter 16:6365
Thiele E (1963) J Chem Phys 39:474
Wertheim MS (1963) Phys Rev Lett 19:321
Zhou S (2003) Phys Lett A 319:279
Henderson JR (1991) In: Henderson D (ed) Fundamentals of inhomogeneous fluids. Marcel Dekker, New York, p 23
Zhou S (2006) J Colloid Interface Sci 298:31
Percus JK (1964) In: Frisch HL, Lebowitz AL (eds) The equilibrium theory of classical fluids. Benjamin, New York, p 113
Zhou S, Jamnik A (2006) Phys Rev E 73:011202
Ancilotto F, Toigo F (2000) J Chem Phys 112:4768
Sukhatme KG, Rutledge JE, Taborek P (1998) Phys Rev Lett 80:129
Holyst R, Poniewierski A (1987) Phys Rev B 36:5628
Marconi UMB (1988) Phys Rev A 38:6267
Mognetti BM, Oettel M, Yelash L, Virnau P, Paul W, Binder K (2008) Phys Rev E 77:041506
Kim S-C, Suh S-H, Seong B-S (2007) J Chem Phys 127:114903
Chakrabarti J, Chakrabarti S, Löwen H (2006) J Phys Condens Matter 18:L81
Abbas S, Lodge TP (2007) Phys Rev Lett 99:137802
Qin Y, Fichthorn KA (2007) J Chem Phys 127:144911
Dahirel V, Jardat M, Dufrêche J-F, Turq P (2007) J Chem Phys 127:095101
Domínguez A, Oettel M, Dietrich S (2007) J Chem Phys 127:204706
Dominguez A, Frydel D, Oettel M (2008) Phys Rev E 77:020401
Lomba E, Almarza NG, Martín C, McBride C (2007) J Chem Phys 126:244510
Lee J, Popov YO, Fredrickson GH (2008) J Chem Phys 128:224908
Orea P (2005) J Chem Phys 123:144704
Orea P (2009) J Chem Phys 130:104703
Liétor-Santos JJ, Chávez-Páez M, Márquez M, Fernández-Nieves A, Medina-Noyola M (2007) Phys Rev E 76:050403
Ramiro-Manzano F, Bonet E, Rodriguez I, Meseguer F (2007) Phys Rev E 76:050401
Merabia S, Pagonabarraga I (2007) J Chem Phys 127:054903
Cappallo N, Lapointe C, Reich DH, Leheny RL (2007) Phys Rev E 76:031505