How commensal microbes shape the physiology of Drosophila melanogaster
Tài liệu tham khảo
Gilbert, 2018, Current understanding of the human microbiome, Nat Med, 24, 392, 10.1038/nm.4517
Leulier, 2017, Integrative physiology: at the crossroads of nutrition, microbiota, animal physiology, and human health, Cell Metab, 25, 522, 10.1016/j.cmet.2017.02.001
Blum, 2013, Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster, mBio, 4, 10.1128/mBio.00860-13
Storelli, 2018, Drosophila perpetuates nutritional mutualism by promoting the fitness of its intestinal symbiont Lactobacillus plantarum, Cell Metab, 27, 362, 10.1016/j.cmet.2017.11.011
Obadia, 2017, Probabilistic invasion underlies natural gut microbiome stability, Curr Biol, 27, 1999, 10.1016/j.cub.2017.05.034
Pais, 2018, Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria, PLoS Biol, 16, 10.1371/journal.pbio.2005710
Ma, 2018, The importance of being persistent: the first true resident gut symbiont in Drosophila, PLoS Biol, 16, 10.1371/journal.pbio.2006945
Douglas, 2018, The Drosophila model for microbiome research, Lab Anim (NY), 47, 157, 10.1038/s41684-018-0065-0
Schretter, 2018, A gut microbial factor modulates locomotor behaviour in Drosophila, Nature, 563, 402, 10.1038/s41586-018-0634-9
Selkrig, 2018, The Drosophila microbiome has a limited influence on sleep, activity, and courtship behaviors, Sci Rep, 8, 10.1038/s41598-018-28764-5
Leitão-Gonçalves, 2017, Commensal bacteria and essential amino acids control food choice behavior and reproduction, PLoS Biol, 15, 10.1371/journal.pbio.2000862
Qiao, 2019, Gut microbiota affects development and olfactory behavior in Drosophila melanogaster, J Exp Biol, 222
Chen, 2019, Drosophila histone demethylase KDM5 regulates social behavior through immune control and gut microbiota maintenance, Cell Host Microbe, 25, 537, 10.1016/j.chom.2019.02.003
Kurz, 2017, Peptidoglycan sensing by octopaminergic neurons modulates Drosophila oviposition, eLife, 6, 10.7554/eLife.21937
Shin, 2011, Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling, Science, 334, 670, 10.1126/science.1212782
Storelli, 2011, Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing, Cell Metab, 14, 403, 10.1016/j.cmet.2011.07.012
Keebaugh, 2018, Microbial quantity impacts Drosophila nutrition, development, and lifespan, iScience, 4, 247, 10.1016/j.isci.2018.06.004
Erkosar, 2015, Pathogen virulence impedes mutualist-mediated enhancement of host juvenile growth via inhibition of protein digestion, Cell Host Microbe, 18, 445, 10.1016/j.chom.2015.09.001
Matos, 2017, D-alanylation of teichoic acids contributes to Lactobacillus plantarum-mediated Drosophila growth during chronic undernutrition, Nat Microbiol, 2, 1635, 10.1038/s41564-017-0038-x
Piper, 2017, Using artificial diets to understand the nutritional physiology of Drosophila melanogaster, Curr Opin Insect Sci, 23, 104, 10.1016/j.cois.2017.07.014
Sannino, 2018, The Drosophila melanogaster gut microbiota provisions thiamine to its host, mBio, 9, 10.1128/mBio.00155-18
Zheng, 2020, A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae, Int J Syst Evol Microbiol, 70, 10.1099/ijsem.0.004107
Consuegra, 2020, Drosophila-associated bacteria differentially shape the nutritional requirements of their host during juvenile growth, PLoS Biol, 18, 10.1371/journal.pbio.3000681
Martino, 2018, Bacterial adaptation to the host’s diet is a key evolutionary force shaping Drosophila-Lactobacillus symbiosis, Cell Host Microbe, 24, 109, 10.1016/j.chom.2018.06.001
Ma, 2019, Commensal gut bacteria buffer the impact of host genetic variants on Drosophila developmental traits under nutritional stress, iScience, 19, 436, 10.1016/j.isci.2019.07.048
Reedy, 2019, Commensal microbiota-induced redox signaling activates proliferative signals in the intestinal stem cell microenvironment, Development, 146
Kamareddine, 2018, The Drosophila immune deficiency pathway modulates enteroendocrine function and host metabolism, Cell Metab, 28, 449, 10.1016/j.cmet.2018.05.026
Brummel, 2004, Drosophila lifespan enhancement by exogenous bacteria, PNAS, 101, 12974, 10.1073/pnas.0405207101
Fast, 2018, Monoassociation with Lactobacillus plantarum disrupts intestinal homeostasis in adult Drosophila melanogaster, mBio, 9, 10.1128/mBio.01114-18
Iatsenko, 2018, Microbiota-derived lactate activates production of reactive oxygen species by the intestinal NADPH oxidase Nox and shortens Drosophila lifespan, Immunity, 49, 929, 10.1016/j.immuni.2018.09.017
Keebaugh, 2019, The nutritional environment influences the impact of microbes on Drosophila melanogaster life span, mBio, 10, 10.1128/mBio.00885-19
Lee, 2019, The role of commensal microbes in the lifespan of Drosophila melanogaster, Aging (Albany NY), 11, 4611, 10.18632/aging.102073
Obata, 2018, Early-life exposure to low-dose oxidants can increase longevity via microbiome remodelling in Drosophila, Nat Commun, 9, 10.1038/s41467-018-03070-w
Resnik-Docampo, 2018, Keeping it tight: the relationship between bacterial dysbiosis, septate junctions, and the intestinal barrier in Drosophila, Fly (Austin), 12, 34, 10.1080/19336934.2018.1441651
Yamada, 2015, Microbes promote amino acid harvest to rescue undernutrition in Drosophila, Cell Rep, 10, 865, 10.1016/j.celrep.2015.01.018
Fan, 2018, Intestinal homeostasis and longevity: Drosophila gut feeling, Adv Exp Med Biol, 1086, 157, 10.1007/978-981-13-1117-8_10
Jones, 2013, Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species, EMBO J, 32, 3017, 10.1038/emboj.2013.224
Min, 2018, Unraveling the molecular mechanism of immunosenescence in Drosophila, Int J Mol Sci, 19, 10.3390/ijms19092472
Schinaman, 2019, Rapamycin modulates tissue aging and lifespan independently of the gut microbiota in Drosophila, Sci Rep, 9, 10.1038/s41598-019-44106-5
Pryor, 2019, Host-microbe-drug-nutrient screen identifies bacterial effectors of metformin therapy, Cell, 178, 1299, 10.1016/j.cell.2019.08.003
Capo, 2016, Bacteria sensing mechanisms in Drosophila gut: local and systemic consequences, Dev Comp Immunol, 64, 11, 10.1016/j.dci.2016.01.001
Guo, 2014, PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan, Cell, 156, 109, 10.1016/j.cell.2013.12.018
Paredes, 2011, Negative regulation by amidase PGRPs shapes the Drosophila antibacterial response and protects the fly from innocuous infection, Immunity, 35, 770, 10.1016/j.immuni.2011.09.018
Charroux, 2018, Cytosolic and secreted peptidoglycan-degrading enzymes in Drosophila respectively control local and systemic immune responses to microbiota, Cell Host Microbe, 23, 215, 10.1016/j.chom.2017.12.007
Iatsenko, 2016, PGRP-SD, an extracellular pattern-recognition receptor, enhances peptidoglycan-mediated activation of the Drosophila IMD pathway, Immunity, 45, 1013, 10.1016/j.immuni.2016.10.029
Lee, 2018, Inflammation-modulated metabolic reprogramming is required for DUOX-dependent gut immunity in Drosophila, Cell Host Microbe, 23, 338, 10.1016/j.chom.2018.01.011
You, 2014, Homeostasis between gut-associated microorganisms and the immune system in Drosophila, Curr Opin Immunol, 30, 48, 10.1016/j.coi.2014.06.006
Troha, 2019, Nephrocytes remove microbiota-derived peptidoglycan from systemic circulation to maintain immune homeostasis, Immunity, 51, 625, 10.1016/j.immuni.2019.08.020
Watnick, 2020, Microbial control of intestinal homeostasis via enteroendocrine cell innate immune signaling, Trends Microbiol, 28, 141, 10.1016/j.tim.2019.09.005
Kim, 2020, Bacterial nucleoside catabolism controls quorum sensing and commensal-to-pathogen transition in the Drosophila gut, Cell Host Microbe, 27, 345, 10.1016/j.chom.2020.01.025
Lee, 2015, Bacterial uracil modulates Drosophila DUOX-dependent gut immunity via hedgehog-induced signaling endosomes, Cell Host Microbe, 17, 191, 10.1016/j.chom.2014.12.012
Lee, 2013, Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila, Cell, 153, 797, 10.1016/j.cell.2013.04.009
Lesperance, 2020, Meta-analysis of diets used in Drosophila microbiome research and introduction of the Drosophila dietary composition calculator (DDCC), G3 (Bethesda), 10, 2207, 10.1534/g3.120.401235
Kietz, 2018, Generating germ-free Drosophila to study gut-microbe interactions: protocol to rear Drosophila under axenic conditions, Curr Protoc Toxicol, 77, e52, 10.1002/cptx.52
Aranda-Díaz, 2020, Bacterial interspecies interactions modulate pH-mediated antibiotic tolerance, eLife, 9, 10.7554/eLife.51493
Consuegra, 2020, Metabolic cooperation among commensal bacteria supports Drosophila juvenile growth under nutritional stress, iScience, 23, 10.1016/j.isci.2020.101232
Gould, 2018, Microbiome interactions shape host fitness, Proc Natl Acad Sci U S A, 115, E11951, 10.1073/pnas.1809349115
Walters, 2019, The microbiota influences the Drosophila melanogaster life history strategy, Mol Ecol, 29, 639, 10.1111/mec.15344
Leftwich, 2018, Reply to Obadia et al.: effect of methyl paraben on host–microbiota interactions in Drosophila melanogaster, PNAS, 115, E4549, 10.1073/pnas.1805499115
Leftwich, 2018, Reply to Rosenberg et al.: diet, gut bacteria, and assortative mating in Drosophila melanogaster, PNAS, 115, E2154, 10.1073/pnas.1721804115
Leftwich, 2017, Gut microbiomes and reproductive isolation in Drosophila, PNAS, 114, 12767, 10.1073/pnas.1708345114
Obadia, 2018, Diet influences host–microbiota associations in Drosophila, PNAS, 115, E4547, 10.1073/pnas.1804948115
Rosenberg, 2018, Diet-induced mating preference in Drosophila, PNAS, 115, E2153, 10.1073/pnas.1721527115
Sharon, 2010, Commensal bacteria play a role in mating preference of Drosophila melanogaster, PNAS, 107, 20051, 10.1073/pnas.1009906107
Téfit, 2018, Stable association of a Drosophila-derived microbiota with its animal partner and the nutritional environment throughout a fly population’s life cycle, J Insect Physiol, 106, 2, 10.1016/j.jinsphys.2017.09.003