How can we make solids more reactive? Basics of mechanochemistry and recent new insights

Mamoru Senna1
1Faculty of Science and Technology, Keio University, Yokohama, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Baláž P, Achimovicova M, Balaz M, Billik P, Cherkezova-Zheleva Z, Criado JM, Delogu F, Dutkova E, Gaffet E, Gotor FJ, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571–7637

Šepelák V, Duvel A, Wilkening M, Becker KD, Heitjans P (2013) Mechanochemical reactions and syntheses of oxides. Chem Soc Rev 42:7507–7520

Blezard R (2004) The history of calcareous cements1–24, in Lea’s chemistry of cement and concrete. Elsevier, Amsterdam

Haynes WM (2015) CRC handbook of chemistry and physics. CRC Press, Boca Raton

Sands D (1994) Introduction to Crystallography. Dover Books, New York

Massa W (2004) Crystal Structure Determination. Springer, New York

Gurney RW, Mott, NF (1938) The theory of photolysis of silver bromide and the photographic latent image. Proc Roy Soc A 164:151–167

Jamnik J, Maier, J. (1997) Transport across and along interfaces in ceramics. Curr Opin Solid State Mater Sci 2:600–603

Joshkin VA, Parker CA, Bedair SM, Muth JF, Shmagin IK, Kolbas RM, Piner EL, Molnar RJ (1999) Effect of growth temperature on point defect density of unintentionally doped GaN grown by metalorganic chemical vapor deposition and hydride vapor phase epitaxy. J Appl Phys 86:281–288

Bailey DJ, Flanagan WF (1967) The relationship between dislocation density and flow stress in materials deforming by a peierls-nabarro mechanism. Philos Phenomenol 15:43–49

Beeman M, Kohlsted, DL (1988) Dislocation density: stress relationships in natural and synthetic sodium chloride. Tecttophys 149:147–161

Gonzalo-Juan I, Riedel R (2016) Ceramic synthesis from condensed phases. ChemTexts 2:6

Verhoeven J (1975) Fundamentals of physical metallurgy. Wiley, Hoboken

Hilbert J, Nather C, Bensch W (2014) Influence of the synthesis parameters onto nucleation and crystallization of five new tin-sulfur containing compounds. Inorg Chem 53:5619–5630

Merkle R, Maier J (2005) On the Tammann-rule. Z Anorg Allgem Chem 631:1163–1166.

Chida S U, B S en na M (1990) A topochemical stury on the microsplaic deformation and preferred dissolution of pure silicon single crystal. Solid State Ionics 39:263–272

Katayama K (1994) Preferential local dissolution of indented silicon {111} surface by aqueous solutions of HF with varying pH. Solid State Ionics 73:127–137

Takacs L (2000) Self-sustaining metal–sulfur reactions induced by ball milling. J Mater Syn Process 8:181–188

Shingu P, Ishihara KN (1993) Metastable melting phenomena and solid state amorphization (SSA) by mechanical alloying. J Alloys Compds 194:319–324

Lu L, Lai MO, Zhang S (1997) Diffusion in mechanical alloying. J Mater Process Technol 67:100–104

Delogu F (2010) Molecular dynamics of collisions between rough surfaces. Phys Rev B 82(20):205415

Ostwald W (1919) Die chemische Literatur und die Organisation der Wissenschaft. Handbuch der allgemeinen Chemie 1 Akademische Verlagsgesellschaf, Leipzig

Hiratsuka K, Kajdas C (2013) Mechanochemistry as a key to understand the mechanisms of boundary lubrication, mechanolysis and gas evolution during friction. Proc Inst Mech Eng Part J J Eng Tribol 227:1191–1203.

Suslick KS (2014) Mechanochemistry and sonochemistry: concluding remarks. Faraday Discuss 170:411–422

Haehnel A, Sagara, Y, Simon YC, Wder C (2015) Mechanochemistry in polymers with supramolecular mechanophores. Topics Curr Chem 369:345–375

Kaupp G (2009) Mechanochemistry: the varied applications of mechanical bond-breaking. Cryst Eng Comm 11:388–403

Baláž P, Choi WS, Fabián M, Godočíková E (2006) Mechanochemistry in the preparation of advanced materials. Acta Montan Slovaca 11:122–129

Gilman J (1996) Mechanochemistry. Science 274:65

Green AE (1937) Stability of polyatomic molecules in degenerate electronic states. Proc R Soc Lond Ser A Math Phys Sci 161:220–235

Butyagin PY (2006) From spontaneous dispersion to mechanical alloying. Colloid J 68 :397–403.

Liao J, Senna M (1993) Mechanochemical dehydration and amorphization of hydroxides of Ca, Mg and Al on grinding with and without SiO2. Solid State Ionics 66:313–319

Avvakumov E, Senna M, Kosova N (2001) Soft mechanochemical synthesis. Kluwer, Dordrecht

Karagedov GR, Avvakumov EG (2011) Low-temperature synthesis of ZrO2-8 mol.% Y2O3 nanopowder with high sinterability. Sci Sinter 43: 239–245.

Senna M, Pavlic J, Rojac T, Malic B, Kosec M, Brennecka G (2014) Preparation of phase-pure K0.5Na0.5NbO3 fine powders by a solid-state reaction at 625 °C from a precursor comprising Nb2O5 and K, Na acetates. J Am Ceram Soc 97(2):413–419

Senna M (2014) Foundation and application of solid-state processes at inorganic–organic particulate boundaries. Adv Powder Technol 25:114–121

Senna M, Šepelák V, Shi J, Bauer B, Feldhoff A, Laporte V, Becker K-D (2012) Introduction of oxygen vacancies and fluorine into TiO2 nanoparticles by co-milling with PTFE. J Solid State Chem 187:51–57

Senna M, Turianicová E, Šepelák V, Bruns M, Scholz G, Lebedkin S, Kübel C, Wang D, Kaňuchová M, Kaus M, Hahn H (2014) Fluorine incorporation into SnO2 nanoparticles by co-milling with polyvinylidene fluoride. Solid State Sci 30:36–43

Ando C, Suzuki T, Mizuno Y, Kishi H, Nakayama S, Senna M (2008) Evaluation of additive effects and homogeneity of the starting mixture on the nuclei-growth processes of barium titanate via a solid state route. J Mater Sci 43:6182–6192

Zaghib K A, M., Bauthier M (1998) Electrochemistry of anodes in solid-state Li-ion polymer batteries. J Electrochem Soc 145:3135–3140

Senna M, Fabián M, Kavan L, Zukalová M, Briančin J, Turianicová E, Bottke P, Wilkening M, Šepelák V (2016) Electrochemical properties of spinel Li4Ti5O12 nanoparticles prepared via a low-temperature solid route. J Solid State Electrochem 20(10):2673–2683

Buschmann H, Dolle J, Berendts S, Kuhn A, Bottke P, Wilkening M, Heitjans P, Senyshyn A, Ehrenberg H, Lotnyk A, Duppel V, Kienle L, Janek J (2011) Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Phys Chem Chem Phys 13(43):19378–19392

Kumar PJ, Nishimura K, Senna M, Düvel A, Heitjans P, Kawaguchi T, Sakamoto N, Wakiya N, Suzuki H (2016) A novel low-temperature solid-state route for nanostructured cubic garnet Li7La3Zr2O12 and its application to Li-ion battery. RSC Adv 6 (67):62656–62667

Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li(7)La(3)Zr(2)O(12). Angew Chem Int Ed 46:7778–7781

Watanabe T, Wakiyama N, Kusai A, Senna M (2004) Drug-carrier interaction in solid dispersions prepared by co-grinding and melt-quenching. Ann Chem Sci Mater 29:53–56