How are students’ attitudes related to learning outcomes?
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson, L. W., & Bourke, S. F. (2000). Assessing affective characteristics in schools. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
Ardies, J., de Maeyer, S., & Gijbels, D. (2013). Reconstructing the pupils attitude towards technology-survey. Design and Technology Education: An International Journal, 18(1), 8–19.
Ardies, J., de Maeyer, S., Gijbels, D., & van Keulen, H. (2014). Students’ attitudes towards technology. International Journal of Technology and Design Education,. doi: 10.1007/s10798-014-9268-x .
Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety and performance. Journal of Experimental Psychology, 120(2), 224–237.
Autio, O., & Soobik, M. (2013). A comparative study of craft and technology education curriculums and students’ attitudes towards craft and technology in Finnish and Estonian Schools. Techne Series A, 20(2), 17–33.
Bentler, P. (1990). Comparative fit index in structural models. Psychological Bulletin, 107, 238–246.
Blachford, G. (1961). A history of handicraft teaching. London: Chatto and Windus.
Blomdahl, E., & Rogala, W. (2008). Technology in compulsory school—Why? What? How? Design and Technology Education: An International Journal, 13(1), 19–28.
Bloom, B. (1976). Human characteristics and school learning. New York: McGraw-Hill.
Borg, K. (2008). Processess or/and Products – What do teachers assess? Design and Technology Education: An International Journal, 12(2), 57–65.
Broadbooks, W. J., Elmore, P. B., Pedersen, K., & Bleyer, D. R. (1981). A construct validation study of the Fennema–Sherman mathematics attitudes scales. Educational and Psychological Measurement, 41, 551–557.
Byrne, B. (2012). Structural equation modeling with Mplus. Basic concepts, applications, and programming. London: Taylor & Francis, Routledge.
Chamberlain, S. A. (2010). A review of instruments created to assess affect in mathematics. Journal of Mathematics Education, 3(1), 167–182.
Chouinard, R., & Roy, N. (2008). Changes in high-school students’ competence beliefs, utility value and achievement goals in mathematics. British Journal of Educational Psychology, 78, 31–50.
Cronbach, L. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334.
Curran, P., West, S., & Finch, J. (1996). The robustness of test statistics to non-normality and specification error in confirmatory factor analysis. Psychological Methods, 1(1), 16–29.
de Vries, M. (2009). The developing field of technology education: An introduction. In A. T. Jones, M. J. de Vries (Eds.), International handbook of research and development in technology education. International technology education studies (pp. 1–9). Rotterdam: Sense Publishers.
Dewey, J. (2011). Democracy and education (first published 1916). Simon & Brown.
Fennema, E., & Sherman, J. A. (1976). Fennema–Sherman mathematics attitudes scales: Instruments designed to measure attitudes toward the learning of mathematics by males and females. Journal for Research in Mathematics Education, 7, 324–326.
Fensham, P. (1992). Science and Technology. In P. Jackson (Ed.), Handbook of research on curriculum (pp. 789–821). New York: MacMillan.
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behaviour: An introduction to theory and research. Reading, MA: Addison-Wesley.
Gliner, J., Morgan, G., & Harmon, R. (2001). Measurement reliability. Journal of the American Academy of Child and Adolescent Psychiatry, 40(4), 486–488.
Hair, J., Black, W., Babin, B., & Anderson, R. (2010). Multivariate data analysis (6th ed.). Upper Saddle River: Pearson Education.
Hendley, D. (2001). Pupils’ attitudes and perceptions towards design and technology. In G. Owen-Jackson (Ed.), Teaching design and technology in secondary schools (pp. 64–76). London: Routledge/Falmer, Taylor & Francis Group.
Hoe, S. (2008). Issues and procedures in adapting structural equation modeling technique. Quantitative methods inquires. Journal of Applied Quantitative Methods, 3(1), 76–83.
Hoyle, R. (1995). The structural equation modeling approach: Basic concepts and fundamental issues. In R. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 1–15). Thousand Oaks: Sage.
Hoyle, R. (2012). Model specification in structural equation modeling. In R. Hoyle (Ed.), Handbook of structural equation modeling (pp. 127–144). New York: The Guilford Press.
Hu, L., & Bentler, P. M. (1999). Cut-off criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.
Järvinen, E.-M., & Rasinen, A. (2014). Implementing technology education in Finnish general education schools: studying the cross-curricular theme ‘Human being and technology’. International Journal of Technology and Design Education,. doi: 10.1007/s10798-014-9270-3 .
Kallio, M. (2014). Risk-responsibility in safety education culture. Painosalama: Annales Universitatis Turkuensis C382, Turku.
Kimbell, R., Stables, K., & Green, R. (2001). The nature and purpose of design and technology. In G. Owen-Jackson (Ed.), Teaching design and technology in secondary schools (pp. 19–30). London: Routledge/Falmer, Taylor & Francis Group.
Klausmaier, H., & Goodwin, W. (1975). Learning and human abilities (4th ed.). New York: Harper & Row.
Kline, R. (2011). Principles and practice of structural equation modeling (3rd ed.). New York: The Guilford Press.
Koulutuksen tilastollinen vuosikirja [Educational Statistics]. (2012). Opetushallitus [Finnish National Board of Education] Reports 2012:5. Tampere: Juvenes Print—Tampere University Press.
Laitinen, S., Hilmola, A., & Juntunen, M.-L. (2011). Perusopetuksen musiikin, kuvataiteen ja käsityön oppimistulosten arviointi 9. vuosiluokalla [Assessment of Learning Results in Compulsory Education Music, Art and Craft in 9th Grade] (Finnish National Board of Education. Training Reports 2011:1).
Lea, J. L., Stephenson, D., & Troy, J. (2003). Higher education students’ attitudes to student-centered learning: Beyond ‘educational bulimia’? Studies in Higher Education, 28(3), 321–334.
Liau, A. K., Kassim, M., & Loke, M. L. T. (2007). Reliability and validity of a Malay translation of the Fennema–Sherman mathematics attitudes scale. The Mathematics Educator, 10(2), 71–84.
Lim, S. Y., & Chapman, E. (2013). An investigation of the Fennema–Sherman mathematics anxiety subscale. Measurement and Assessment in Counseling and Development, 46(1), 26–37.
Lindfors, L. (1999). Sloyd education in the cultural struggle. Part VIII. An outline of a Sloyd educational theory. (Åbo Akademi University. Reports from the Faculty of Education, 4/1999).
Little, T. D., Lindenberger, U., & Nesselroade, J. R. (1999). On selecting indicators for multivariate measurement and modeling with latent variables: When “good” indicators are bad and “bad” indicators are good. Psychological Methods, 4(2), 192–211.
MacCallum, R., & Austin, J. (2000). Applications of structural equation modelling in psychological research. Annual Reviews of Psychology, 51, 201–226.
McCormick, R. (2001). The coming of technology education in England and Wales. In G. Owen-Jackson (Ed.), Teaching design and technology in secondary schools (pp. 31–57). London: Routledge/Falmer, Taylor & Francis Group.
McDonald, R., & Ho, R. (2002). Principles and practises in reporting structural equation analyses. Psychological Methods, 7, 64–82.
Metsämuuronen, J. (2009a). Methods Assisting Assessment; Methodological solutions for the National assessment and Follow-Ups in the Finnish national Board of Education [In Finnish], (Oppimistulosten arviointi 1/2009. Opetushallitus. Helsinki: Yliopistopaino).
Metsämuuronen, J. (2009b). Tutkimuksen tekemisen perusteet ihmistieteissä 4. International Methelp Oy.
Metsämuuronen, J. (2012). Challenges of the Fennema–Sherman test in the international comparisons. International Journal of Psychological Studies, 4(3), 1–22.
Metsärinne, M. (2008). Suomen koulukäsityön neljä aikakautta opetussuunnitelmien ja teknisen työn oppikirjojen kuvauksena - kohti monipuolista koulukäsityön tutkimusta ja käytänteitä [The four Finnish school Sloyd periods as a description of curricula and textbooks—Towards diverse school Sloyd research and practice]. Techne Series A, 13, 1–128.
Metsärinne, M. (2011). Käsityön prosessioppimisen tarkastelua koulukäsityön perus- ja otosmittariarvioinnin perusteella [Examining Process Learning of technology by Basic and Sample Assessment]. In S. Laitinen & A. Hilmola (Eds.), Taito- ja taideaineiden oppimistulokset – asiantuntijoiden arviointia [Learning results in craft—An expert analysis], (Finnish National Board of Education. Reports 2011:11, pp. 194–206).
Metsärinne, M. & Kallio, M. (2011a). Johdatus tutkivaan tuottamiseen [Introduction to research based production], Techne Series B, 16.
Metsärinne, M. & Kallio, M. (2011b). Defining craft quality theory framework in Sloyd education, In M. Johansson & M. Porko-Hudd (Eds.), Vetenskapliga perspektiv och metoder inom slöjdfältet [Scientific perspective and methods for Sloyd], Techne Series A, 18 (1).
Metsärinne, M., & Kallio, M. (2014a). Craft interests during leisure time and craft learning outcomes in Finland. Craft Research, 5(1), 35–53.
Metsärinne, M. & Kallio, M. (2014b). Experiences of classroom techniques and technology learning outcomes, Design and Technology Education: An International Journal, 19(3), 9–22.
Metsärinne, M., Kallio, M., & Virta, K. (2015). Pupils’ readiness for self-regulated learning in the forethought phase of exploratory production. International Journal of Technology and Design Education, 25(1), 85–108.
Metsärinne, M., Kullas, S., Kallio, M. & Pirttimaa, M. (2010). Teacher students’ individual growth into the craftsteachership. In A. Rasinen & T. Rissanen (Eds.), In the spirit of Uno Cygnaeus—Pedagogical questions of today and tomorrow (pp. 223–240). Department of Teacher Education, University of Jyväskylä.
Mill, C. R. (1960). Attitudes affect pupils’ learning. Educational Leadership, 17(4), 212–216.
Ministry of Education and Culture. (2014). Finnish student performance in PISA 2012 problem solving assessment one of the best (Press releases). www.minedu.fi/OPM/Tiedotteet/2014/04/Pisa_ongelmanratkaisu.html?lang=en . Accessed 2 September 2014.
Morgan, G., Gliner, J., & Harmon, R. (2001). Measurement validity. Journal of the American Academy of Child and Adolescent Psychiatry, 40, 729–731.
National Core Curriculum for Basic Education. (2004). Finnish National Board of Education. http://www.oph.fi/download/47673_core_curricula_basic_education_4.pdf . Accessed 20 January 2014.
Norström, P. (2013). How technology teachers understand technological knowledge. International Journal of Technology and Design Education, 24(1), 19–38.
Ólafsson, B., & Thorsteinsson, G. (2009). Design and craft education in Iceland, pedagogical background and development: A literature review. Design and Technology Education: An International Journal, 14(2), 10–24.
Pallasmaa, J. (2009). The thinking hand. Existential and embodied wisdom in architecture. Hoboken: Wiley.
Parikka, M., Rasinen, A., & Ojala, A. (2011). Technology education. The ethical challenge. In M. J. de Vries (Ed.), Positioning technology education in the curriculum. International technology education series (pp. 133–143). Rotterdam: Sense Publishers.
Peltonen, J. (1995). The problem of the difference between craft and prevocational education in primary education. In J. Lasonen & M.-L. Stenström (Eds.), Contemporary issues of occupational education in Finland (Institute for Educational Research. University of Jyväskylä. Jyväskylä: Kopi-Jyvä Oy).
Peltonen, J. (2003a). The chain of rational theories as the directing means of productive activities in academic Sloyd education. Techne Series A, 5, 78–96.
Peltonen, J. (2003b). Handicraft education and truth. Considerations of truth as a basis for research-oriented teaching in handicraft education. In M. Itkonen & G. Backhaus (Eds.), Lived images. Mediations in experience, life-world and I-hood (pp. 412–429). Department of Teacher Education, University of Jyväskylä.
Peltonen, M., & Ruohotie, P. (1992). Oppimismotivaatiot. Teoriaa, tutkimuksia ja esimerkkejä oppimishalukkuudesta. [Theory, research and examples of motivation towards learning]. Keuruu: Otava.
Rasinen, A., Ikonen, P., & Rissanen, T. (2006). Are girls equal in technology education? In M. J. de Vries & I. Mottier (Eds.), International handbook of technology education. Reviewing the past twenty years. International technology education series (pp. 449–462). Rotterdam: Sense Publishers.
Rasinen, A., Ikonen, P., & Rissanen, T. (2011). Technology education in Finnish copmrehensive schools. In C. Benson & J. Lunt (Eds.), Reviewing the past twenty years. International technology education series (pp. 97–105). Rotterdam: Sense Publishers.
Rohaan, E. J., Taconis, R., & Jochems, W. M. G. (2010). Reviewing the relations between teachers’ knowledge and pupils’ attitude in the field of primary technology education. International Journal of Technology and Design Education, 20(1), 15–26.
Sachs, J., & Leung, S. O. (2007). Shortened versions of Fennema–Sherman mathematic attitude scales employing trace information. Psychologika, 50(3), 224–235.
Schraw, G. (2006). Knowledge: Structures and processes. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (pp. 245–264). Mahwah: Lawrence Erlbaum Associates Publishers.
Sherman, H. J., & Christian, M. (1999). Mathematics attitudes and global self-concept: An investigation of the relationship. College Student Journal, 33, 1–6.
Shin, J., Lee, H., & Kim, Y. (2009). Student and school factors affecting mathematics achievement: International comparisons between Korea, Japan and the USA. School of Psychology International, 30, 520–537.
Steiger, J. (1990). Structural model assessment and modification: An interval estimation approach. Multivariate Behaviour Research, 25, 173–180.
Steiger, J. (2000). Point estimation, hypothesis testing, and interval estimation using the RMSEA: Some comments and a reply to Hayduk and Glaser. Structural Equation Modeling, 7(2), 149–162.
Tapia, M., & Marsh, G. E. (2004). An instrument to measure mathematics attitudes. Academic Exchange Quarterly, 8(2), 16–21.
Tucker, L., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1–10.
Ullman, J. (2001). Structural equation modelling. In B. Tabachnik & L. Fidell (Eds.), Using multivariate statistics (4th ed., pp. 653–771). Needham Heights: Allyn & Bacon.
Volk, K. S. (2007). Attitudes. In M. de Vries, R. Custer, J. Dakers, & G. Martin (Eds.), International journal of technology education series (pp. 191–202). Rotterdam: Sense Publishers.
West, S., Taylor, A., & Wu, W. (2012). Model fit and model selection in structural equation modeling. In R. Hoyle (Ed.), Handbook of structural equation modeling (pp. 209–231). New York: The Guilford Press.
Whittaker, D. J. (2014). The impact and legacy of educational Sloyd. Head and hands in harness. London: Routledge, Taylor & Francis Group.
Wikoff, R. L., & Buchalter, B. D. (2006). Factor analysis of four Fennema–Sherman mathematics attitude scales. International Journal of Mathematical Education in Science and Technology, 17(6), 703–706.
Yu, K.-C., Lin, K.-Y., Han, F.-N., & Hsu, I.-Y. (2012). A model of junior high school students’ attitudes toward technology. International Journal of Technology and Design Education, 22, 423–436.
Zimmerman, B. J. (1998). Developing self-fulfilling cycles of academic regulation: An analysis of exemplary instructional models. In D. H. Schunk & B. J. Zimmerman (Eds.), Self-regulated learning from teaching to self-reflective practice (pp. 1–19). New York: The Guilford Press.
Zimmerman, B. J. (2011). Motivational sources and outcomes of self-regulated learning and performance. In B. J. Zimmerman & D. H. Schunk (Eds.), Handbook of self-regulation of learning and performance (pp. 49–64). London: Routledge.