How a new fire‐suppression policy can abruptly reshape the fire‐weather relationship

Ecosphere - Tập 6 Số 10 - Trang 1-19 - 2015
Julien Ruffault1,2,3, Florent Mouillot1
1CEFE UMR 5175, CNRS-Université de Montpellier–Université Paul-Valéry Montpellier–EPHE-IRD, F-34293, Montpellier cedex 5, France
2CEREGE UMR 7330, CNRS/Aix-Marseille Université, Europole de l’Arbois, BP 8013545, Aix-en-Provence cedex 4, France
3Irstea, UR EMAX Ecosystémes méditerranéens et risques, 3275 route Cézanne, CS 40061, 13182 Aix-en-Provence cedex 5, France

Tóm tắt

Understanding how the interactions between anthropogenic and biophysical factors control fire regimes is increasingly becoming a major concern in a context of climate, economic and social changes. On a short time scale, fire activity is mainly driven by the variations in weather conditions. But while the assessment of this fire‐weather relationship is an essential step towards fire hazard estimations, reconstructions or projections, still little is known about the impact of human practices on this relationship. In this study, we examined the recent fire history in southern France where a new fire policy, introduced during the 1980s, suddenly brought new fire suppression and prevention practices. We aimed at assessing the impact of these changes on fire activity and on the relationships between fire and weather, usually assumed to be constant over time. To do so, we used a statistical framework based on spatially explicit daily fire occurrence data, the corresponding weather variables and the associated fuel moisture derived from a process‐based model. Our results showed that the introduction of the new fire policy resulted in a sharp decrease in fire activity but also impacted the daily fire‐weather relationship in two main ways. On the one hand, fewer wildfires ignited for similar weather conditions. On the other hand, the probability of a fire to spread over significant surfaces shifted from a fuel‐dryness driven system to a system driven by the concomitance of fuel dryness and strong winds. These observations suggest that mid‐term (decadal) social factors can affect the short‐term (seasonal to daily) relationship between weather conditions and fire activity. Thus, the interactions between human and climate factors should be taken into account when reconstructing or projecting fire activity and including the impact of fire policies on the fire‐weather relationships in fire models would be an important step towards more realistic fire regimes simulations.

Từ khóa


Tài liệu tham khảo

Abrantes P., 2010, Dynamiques urbaines et mutations des espaces agricoles en Languedoc-Roussillon (France), Cybergeo, 485

Alexandrian D., 2008, Les statistiques “feux de forêt” de ces trente dernières années, Forêt Méditerranéenne, 29, 377

Alexandrian D., 1999, Public policies affecting forest fires in the Mediterranean Basin. Forestry Paper

10.1016/j.tree.2008.07.014

10.1111/j.1466-8238.2010.00568.x

10.1038/nclimate2250

10.1111/j.1365-2486.2008.01679.x

10.2307/1939341

10.1016/j.tree.2005.04.025

10.1111/j.1365-2699.2011.02595.x

10.1111/gcb.12449

10.1371/journal.pone.0062392

10.1097/00010694-197406000-00001

Carreiras M., 2014, Comparative analysis of policies to deal with wildfire risk, Land Degradation and Development, 103, 92, 10.1002/ldr.2271

Chandler C., 1983, Fire in forestry. Volume 1. Forest fire behavior and effects

10.1111/geb.12095

10.1139/x04-174

10.1071/WF13157

10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2

10.1046/j.1365-2699.1999.00316.x

10.1007/s10021-006-0095-0

10.1111/j.1365-2656.2008.01390.x

10.1038/049233c0

10.1007/s10584-005-5935-y

10.1016/j.apgeog.2014.10.001

Gaultier J. P., 1993, L'organisation et la gestion des donnees pedologiques spatialisees: le projet DONESOL, Revue de geomatique, 3, 235

10.1890/06-0831

10.1029/2007JD008548

10.1111/geb.12246

10.3406/medit.1985.2301

10.1126/science.284.5421.1829

10.5194/bg-7-1877-2010

10.1126/science.1084460

10.1016/j.agrformet.2011.12.006

10.1890/05-1021

10.1890/09-1843.1

Lacomblez C., 2004, Analyse des données statistiques sur les feux de forêt, Prévention sécurité, 77, 8

10.1126/science.1247355

10.1890/07-1183.1

10.1007/s10584-012-0488-3

10.1038/ngeo313

10.1007/s10980-010-9491-0

10.1016/j.jenvman.2011.06.028

10.1029/2009GL041735

10.1073/pnas.0508985102

10.1111/j.1365-2486.2005.00920.x

10.1046/j.1365-2486.2002.00494.x

10.1016/S0378-1127(00)00432-1

Nowacki G., 2008, The demise of fire and “mesophication” of forests in the eastern United States, BioScience 58, 123

10.1086/587826

Parks S. A., 2012, Spatial bottom-up controls on fire likelihood vary across western North America, Ecosphere, 3, 20, 10.1890/ES11-00298.1

10.1023/B:CLIM.0000018508.94901.9c

10.1007/s10584-011-0060-6

10.1525/bio.2009.59.7.10

10.1007/s10021-014-9773-5

10.1111/j.1466-8238.2012.00769.x

10.1073/pnas.1003669107

10.1071/WF06081

10.1016/j.agrformet.2004.12.007

10.5194/gmd-6-643-2013

10.1016/j.ecolmodel.2004.09.001

10.1071/WF09001

10.1071/WF06107

Pyne S. J., 1996, Introduction to wildland fire

10.1175/2007JAMC1636.1

R Core Team, 2012, A language and environment for statistical computing.

10.1016/S0304-3800(01)00272-1

Ridgeway G., 2006, Generalized boosted regression models. Documentation on the R package “gbm,” version 1.5 7

10.1007/s00704-013-0992-z

10.1007/s10584-012-0559-5

10.1007/s11069-013-0951-0

10.1029/2000JD900505

10.1086/285067

10.1126/science.249.4972.1017

10.5194/bg-7-1991-2010

10.1046/j.1466-822X.2001.00175.x

10.5194/nhess-13-649-2013

10.1071/WF12031

10.4267/2042/5091

10.1111/gcb.12590

10.5194/acp-10-11707-2010

10.5194/gmd-7-2747-2014

10.1016/S0167-9473(03)00030-6