How Non-invasive Brain Stimulation Might Invade Our Sphere of Justice

Springer Science and Business Media LLC - Tập 1 - Trang 31-38 - 2017
Andrea Lavazza1, Mirko D. Garasic2
1Centro Universitario Internazionale, Arezzo, Italy
2The Edmond J. Safra Center for Ethics, Tel Aviv University, Tel Aviv-Yafo, Israel

Tóm tắt

Non-invasive brain stimulation (NIBS) is proving to be an effective method to enhance cognitive skills and motor coordination, which makes it a precious tool both in the intellectual sphere and in sports. Accordingly, in selective-competitive contexts, the use of NIBS can threaten the fairness and produce unexpected social composition effects. To avoid those negative consequences, it might be recommended that people should declare the use of enhancers of any kind, including those that are not explicitly prohibited. But the duty of disclosure seems particularly problematic to be enforced with NIBS, as it is not currently detectable. Moreover, considering the fact that NIBS has very different enhancement effects on each individual, all these elements may create strong performance inequalities and consequent discrimination, if NIBS were to become widespread. In this paper, within a Rawlsian theoretical framework, we highlight the risks posed by this new performance-enhancing technology and we propose compelling moral reasons for some forms of regulation of non-clinical use of NIBS.

Tài liệu tham khảo

Brunoni, A. R., & Vanderhasselt, M. A. (2014). Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-analysis. Brain and Cognition, 86, 1–9. Buchanan, A., Brock, D. W., Daniels, N., & Wikler, D. (2001). From chance to choice: genetics and justice. New York: Cambridge University Press. Cabrera, L. Y., Evans, E. L., & Hamilton, R. H. (2014). Ethics of the electrified mind: defining issues and perspectives on the principled use of brain stimulation in medical research and clinical care. Brain Topography, 27(1), 33–45. Callaway, N. (2013). Shocks to the brain improve mathematical abilities. Nature News. doi:10.1038/nature.2013.13012. Cappelletti, M., Gessaroli, E., Hithersay, R., Mitolo, M., Didino, D., Kanai, R., et al. (2013). Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. The Journal of Nneuroscience, 33(37), 14899–14907. Chew, T., Ho, K. A., & Loo, C. K. (2015). Inter-and intra-individual variability in response to transcranial direct current stimulation (tDCS) at varying current intensities. Brain Stimulation, 8(6), 1130–1137. Chi, R. P., & Snyder, A. W. (2012). Brain stimulation enables the solution of an inherently difficult problem. Neuroscience Letters, 515(2), 121–124. Coffman, B. A., Clark, V. P., & Parasuraman, R. (2014). Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. NeuroImage, 85, 895–908. Cogiamanian, F., Marceglia, S., Ardolino, G., Barbieri, S., & Priori, A. (2007). Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. European Journal of Neuroscience, 26(1), 242–249. Cohen Kadosh, R. (Ed.). (2014). The stimulated brain. Cognitive enhancement using non-invasive brain stimulation. London: Academic. Cohen Kadosh, R., Soskic, S., Iuculano, T., Kanai, R., & Walsh, V. (2010). Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Current Biology, 20(22), 2016–2020. Cohen Kadosh, R., Levy, N., O’Shea, J., Shea, N., & Savulescu, J. (2012). The neuroethics of non-invasive brain stimulation. Current Biology, 22(4), R108–R111. Daniels, N. (1985). Just health care. New York: Cambridge University Press. Datta, A., Truong, D., Minhas, P., Parra, L. C., & Bikson, M. (2012). Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Frontiers in Psychiatry, 3, 91. Davis, N. J. (2013). Neurodoping: brain stimulation as a performance-enhancing measure. Sports Medicine, 43(8), 649–653. Davis, N. J. (2015). Transcranial stimulation of the developing brain: a plea for extreme caution. Frontiers in Human Neuroscience, 8, 600. Davis, N. J., & van Koningsbruggen, M. V. (2013). “Non-invasive” brain stimulation is not non-invasive. Frontiers in Systems Neuroscience, 7, 76. Fitz, N., & Reiner, P. (2013). The challenge of crafting policy for do-it-yourself brain stimulation. Journal of Medical Ethics. doi:10.1136/medethics-2013-101458. Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D., & Pascual-Leone, A. (2012). Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biological Psychiatry, 72(7), 595–603. Garasic, M. D. (2015). Guantanamo and other cases of enforced medical treatment: a biopolitical analysis. New York-Berlin: Springer. Garasic, M. D., & Lavazza, A. (2016). Moral and social reasons to acknowledge the use of cognitive enhancers in competitive-selective contexts. BMC Medical Ethics, 17(1), 1. Harris, J. (1992). Wonderwoman and Superman: the ethics of human biotechnology. Oxford: Oxford University Press. Harris, J., & Savulescu, J. (2015). A debate about moral enhancement. Cambridge Quarterly of Healthcare Ethics, 24(1), 8–22. Hauser, T. U., Rotzer, S., Grabner, R. H., Mérillat, S., & Jäncke, L. (2013). Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial direct current stimulation (tDCS). Frontiers in Human Neuroscience, 7, 244. Heinrichs, J. H. (2012). The promises and perils of non-invasive brain stimulation. International Journal of Law and Psychiatry, 35(2), 121–129. Horvath, J. C., Carter, O., & Forte, J. D. (2014). Transcranial direct current stimulation: five important issues we aren’t discussing (but probably should be). Frontiers in Systems Neuroscience, 8, 2. Ikkos, G., Boardman, J., & Zigmond, T. (2006). Talking liberties: John Rawls’s theory of justice and psychiatric. Advances in Psychiatric Treatment, 12(3), 202–210. Krause, B., & Cohen Kadosh, R. (2014). Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Frontiers in Systems Neuroscience, 8, 25. Kuo, M. F., Paulus, W., & Nitsche, M. A. (2014). Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. NeuroImage, 85, 948–960. López-Alonso, V., Cheeran, B., Río-Rodríguez, D., & Fernández-del-Olmo, M. (2014). Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimulation, 7(3), 372–380. Maslen, H., Earp, B. D., Cohen Kadosh, R., & Savulescu, J. (2014). Brain stimulation for treatment and enhancement in children: an ethical analysis. Frontiers in Human Neuroscience, 8, 953. Mayseless, N., & Shamay-Tsoory, S. G. (2015). Enhancing verbal creativity: modulating creativity by altering the balance between right and left inferior frontal gyrus with tDCS. Neuroscience, 291, 167–176. McKinley, R. A., McIntire, L., Bridges, N., Goodyear, C., Bangera, N. B., & Weisend, M. P. (2013). Acceleration of image analyst training with transcranial direct current stimulation. Behavioral Neuroscience, 127(6), 936–946. Meinzer, M., Lindenberg, R., Antonenko, D., Flaisch, T., & Flöel, A. (2013). Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. The Journal of Neuroscience, 33(30), 12470–12478. Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., et al. (2008). Transcranial direct current stimulation: state of the art 2008. Brain Stimulation, 1(3), 206–223. Nussbaum, M. (2006). Frontiers of justice: disabilities, nationality, species membership. Cambridge (MA): Harvard University Press. Parkin, B. L., Ekhtiari, H., & Walsh, V. F. (2015). Non-invasive human brain stimulation in cognitive neuroscience: a primer. Neuron, 87(5), 932–945. Pascual-Leone, A., & Wagner, T. (2007). A brief summary of the history of noninvasive brain stimulation. Annual Review of Biomedical Engineering, 9, 527–565. Paulus, W. (2011). Transcranial electrical stimulation (tES–tDCS; tRNS, tACS) methods. Neuropsychological Rehabilitation, 2(5), 602–617. Persson, I., & Savulescu, J. (2012). Unfit for the future: the need for moral enhancement. Oxford: Oxford University Press. Podda, M. V., Cocco, S., Mastrodonato, A., Fusco, S., Leone, L., Barbati, S. A., et al. (2016). Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression. Scientific Reports, 6, 22180. Rawls, J. (1980). Kantian constructivism in moral theory. Journal of Philosophy, 77(9), 515–572. Rawls, J. (1999). A theory of justice. Revised edition. New York: Oxford University Press. Reardon, S. (2016). “Brain doping” may improve athletes’ performance. Nature, 531(7594), 283–284. Robertson, M. (2009). Part I: psychiatrists and social justice—the concept of justice. Journal of Ethics in Mental Health, 2(2), 6. Savulescu, J., & Persson, I. (2012). Moral enhancement, freedom and the God machine. The Monist, 95(3), 399–421. Sehm, B., & Ragert, P. (2013). Why non-invasive brain stimulation should not be used in military and security services. Frontiers in Human Neuroscience, 7, 583. Snowball, A., Tachtsidis, I., Popescu, T., Thompson, J., Delazer, M., Zamarian, L., et al. (2013). Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Current Biology, 23(11), 987–992. Steenbergen, L., Sellaro, R., Hommel, B., Lindenberger, U., Kühn, S., & Colzato, L. S. (2016). “Unfocus” on foc. us: commercial tDCS headset impairs working memory. Experimental Brain Research, 234(3), 637–643. Strickland, E. (2016). Olympic athletes are electrifying their brains, and you can too. IEEE Spectrum, 23 August, http://spectrum.ieee.org/biomedical/bionics/olympic-athletes-are-electrifying-their-brains-and-you-can-too- Walsh, V. Q. (2013). Ethics and social risks in brain stimulation. Brain Stimulation, 6(5), 715–717. Wexler, A. (2015). The practices of do-it-yourself brain stimulation: implications for ethical considerations and regulatory proposals. Journal of Medical Ethics. doi:10.1136/medethics-2015-102704. Wiethoff, S., Hamada, M., & Rothwell, J. C. (2014). Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimulation, 7(3), 468–475. Wurzman, R., Hamilton, R., Pascual‐Leone, A., & Fox, M. (2016). An open letter concerning do-it-yourself (DIY) users of transcranial direct current stimulation (tDCS). Annals of Neurology. doi:10.1002/ana.24689. Zhu, F. F., Yeung, A. Y., Poolton, J. M., Lee, T. M., Leung, G. K., & Masters, R. S. (2015). Cathodal transcranial direct current stimulation over left dorsolateral prefrontal cortex area promotes implicit motor learning in a golf putting task. Brain Stimulation, 8(4), 784–786.