How Microbes Evolved to Tolerate Oxygen

Trends in Microbiology - Tập 29 - Trang 428-440 - 2021
Maryam Khademian1, James A. Imlay1
1Department of Microbiology, University of Illinois, Urbana, IL 61801, USA

Tài liệu tham khảo

Fridovich, 1989, Superoxide dismutases. An adaptation to a paramagnetic gas, J. Biol. Chem., 264, 7761, 10.1016/S0021-9258(18)83102-7 Anbar, 2008, Oceans: elements and evolution, Science, 322, 1481, 10.1126/science.1163100 Hosseinzadeh, 2016, Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics, Biochim. Biophys. Acta, 1857, 557, 10.1016/j.bbabio.2015.08.006 Rocha, 2016, Life without Fe-S clusters, Mol. Microbiol., 99, 821, 10.1111/mmi.13273 Blankenship, 2010, Early evolution of photosynthesis, Plant Physiol., 154, 434, 10.1104/pp.110.161687 Fischer, 2016, Evolution of oxygenic photosynthesis, Annu. Rev. Earth Planet. Sci., 44, 647, 10.1146/annurev-earth-060313-054810 Rosing, 2004, U-rich Archaean sea-floor sediments from Greenland – indications of >3700 Ma oxygenic photosynthesis, Earth Planet. Sci. Lett., 217, 237, 10.1016/S0012-821X(03)00609-5 Cardona, 2019, Early Archean origin of Photosystem II, Geobiology, 17, 127, 10.1111/gbi.12322 Buick, 2008, When did oxygenic photosynthesis evolve?, Philos. Trans. R. Soc. B Biol. Sci., 363, 2731, 10.1098/rstb.2008.0041 Soo, 2019, Evolution of photosynthesis and aerobic respiration in the cyanobacteria, Free Radic. Biol. Med., 140, 200, 10.1016/j.freeradbiomed.2019.03.029 Shih, 2017, Crown group Oxyphotobacteria postdate the rise of oxygen, Geobiology, 15, 19, 10.1111/gbi.12200 Pavlov, 2002, Mass-independent fractionation of sulfur isotopes in Archean sediments : strong evidence for an anoxic Archean atmosphere, Astrobiology, 2, 27, 10.1089/153110702753621321 Kump, 2008, The rise of atmospheric oxygen, Nature, 451, 277, 10.1038/nature06587 Lyons, 2014, The rise of oxygen in Earth’s early ocean and atmosphere, Nature, 506, 307, 10.1038/nature13068 Kihara, 2014, Oxygen concentration inside a functioning photosynthetic cell, Biophys. J., 106, 1882, 10.1016/j.bpj.2014.03.031 Knoll, 2017, The timetable of evolution, Sci. Adv., 3, 1, 10.1126/sciadv.1603076 Raymond, 2006, The effect of oxygen on biochemical networks and the evolution of complex life, Science, 311, 1764, 10.1126/science.1118439 Soo, 2019, On the origin of oxygenic photosynthesis and Cyanobacteria, Science, 1440, 1436 Khademian, 2017, Escherichia coli cytochrome c peroxidase is a respiratory oxidase that enables the use of hydrogen peroxide as a terminal electron acceptor, Proc. Natl. Acad. Sci. U. S. A., 114, E6922, 10.1073/pnas.1701587114 Saito, 2003, The bioinorganic chemistry of the ancient ocean: The co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean-Proterozoic boundary?, Inorg. Chim. Acta, 356, 308, 10.1016/S0020-1693(03)00442-0 Outten, 2001, Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis, Science, 292, 2488, 10.1126/science.1060331 Wandersman, 2004, Bacterial iron sources: from siderophores to hemophores, Annu. Rev. Microbiol., 58, 611, 10.1146/annurev.micro.58.030603.123811 Andrews, 2010, The Ferritin-like superfamily: Evolution of the biological iron storeman from a rubrerythrin-like ancestor, Biochim. Biophys. Acta, 1800, 691, 10.1016/j.bbagen.2010.05.010 Hennigar, 2014, Nutritional immunity: starving pathogens of trace minerals, Am. J. Lifestyle Med., 10, 170, 10.1177/1559827616629117 Carlioz, 1986, Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life?, EMBO J., 5, 623, 10.1002/j.1460-2075.1986.tb04256.x Christman, 1985, Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium, Cell, 41, 753, 10.1016/S0092-8674(85)80056-8 Greenberg, 1989, A global response induced in Escherichia coli by redox-cycling agents overlaps with that induced by peroxide stress, J. Bacteriol., 171, 3933, 10.1128/jb.171.7.3933-3939.1989 Tsaneva, 1990, soxR, a locus governing a superoxide response regulon in Escherichia coli K-12, J. Bacteriol., 172, 4197, 10.1128/jb.172.8.4197-4205.1990 Imlay, 2019, Where in the world do bacteria experience oxidative stress?, Environ. Microbiol., 21, 521, 10.1111/1462-2920.14445 Anjem, 2012, Mononuclear iron enzymes are primary targets of hydrogen peroxide stress, J. Biol. Chem., 287, 15544, 10.1074/jbc.M111.330365 Gu, 2013, Superoxide poisons mononuclear iron enzymes by causing mismetallation, Mol. Microbiol., 89, 123, 10.1111/mmi.12263 Kuo, 1987, alpha,betha-dihydroxyisovalerate dehydratase, J. Biol. Chem., 262, 4724, 10.1016/S0021-9258(18)61255-4 Flint, 1993, The inactivation of Fe-S cluster containing hydro-lyases by superoxide, J. Biol. Chem., 268, 22369, 10.1016/S0021-9258(18)41538-4 Jang, 2007, Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes, J. Biol. Chem., 282, 929, 10.1074/jbc.M607646200 Park, 2005, Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx- mutants of Escherichia coli, Proc. Natl. Acad. Sci. U. S. A., 102, 9317, 10.1073/pnas.0502051102 Fischer, 2016, How did life survive Earth’s great oxygenation?, Curr. Opin. Chem. Biol., 31, 166, 10.1016/j.cbpa.2016.03.013 Latour, 2015, Manganese, the stress reliever, Metallomics, 7, 25, 10.1039/C4MT00180J Fahey, 2013, Glutathione analogs in prokaryotes, Biochim. Biophys. Acta, 1830, 3182, 10.1016/j.bbagen.2012.10.006 Sedoud, 2014, The cyanobacterial photoactive orange carotenoid protein is an excellent singlet oxygen quencher, Plant Cell, 26, 1781, 10.1105/tpc.114.123802 Manchester, 2015, Melatonin: An ancient molecule that makes oxygen metabolically tolerable, J. Pineal Res., 59, 403, 10.1111/jpi.12267 Slesak, 2016, Enzymatic antioxidant systems in early anaerobes: theoretical considerations, Astrobiology, 16, 348, 10.1089/ast.2015.1328 Inupakutika, 2016, The evolution of reactive oxygen species metabolism, J. Exp. Bot., 67, 5933, 10.1093/jxb/erw382 Case, 2017, On the origin of superoxide dismutase: An evolutionary perspective of superoxide-mediated redox signaling, Antioxidants, 6, 82, 10.3390/antiox6040082 Anbar, 2007, A whiff of oxygen before the great oxidation event?, Science, 317, 1903, 10.1126/science.1140325 Nelson, 2015, Structure and energy transfer in photosystems of oxygenic photosynthesis, Annu. Rev. Biochem., 84, 659, 10.1146/annurev-biochem-092914-041942 Hohmann-Marriott, 2011, Evolution of photosynthesis, Annu. Rev. Plant Biol., 62, 515, 10.1146/annurev-arplant-042110-103811 Zamocky, 2012, Molecular evolution of hydrogen peroxide degrading enzymes, Arch. Biochem. Biophys., 525, 131, 10.1016/j.abb.2012.01.017 Passardi, 2007, Phylogenetic distribution of catalase-peroxidases: Are there patches of order in chaos?, Gene, 397, 101, 10.1016/j.gene.2007.04.016 Al-attar, 2016, Cytochrome bd displays significant quinol peroxidase activity, Nat. Publ. Gr., 6, 1 Fee, 1982, Is superoxide important in oxygen poisoning?, Trends Biochem. Sci., 7, 84, 10.1016/0968-0004(82)90151-7 Messner, 2002, Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase, J. Biol. Chem., 277, 42563, 10.1074/jbc.M204958200 Yankovskaya, 2003, Architecture of succinate dehydrogenase and reactive oxygen species generation, Science, 299, 700, 10.1126/science.1079605 Lu, 2017, The fumarate reductase of Bacteroides thetaiotaomicron, unlike that of Escherichia coli, is configured so that it does not generate reactive oxygen species, mBio, 8, 1, 10.1128/mBio.01873-16 Archibald, 1986, Manganese: Its acquisition by and function in the lactic acid bacteria, Crit. Rev. Microbiol., 13, 63, 10.3109/10408418609108735 Lingappa, 2019, How manganese empowered life with dioxygen (and vice versa), Free Radic. Biol. Med., 140, 113, 10.1016/j.freeradbiomed.2019.01.036 Imlay, 2003, Pathways of oxidative damage, Annu. Rev. Microbiol., 57, 395, 10.1146/annurev.micro.57.030502.090938 Imlay, 2013, The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium, Nat. Rev. Microbiol., 11, 443, 10.1038/nrmicro3032 Morimyo, 1982, Anaerobic incubation enhances the colony formation of a polA recB strain of Escherichia coli K-12, J. Bacteriol., 152, 208, 10.1128/jb.152.1.208-214.1982 Boling, 1984, Restoration of viability to an Escherichia coli mutant deficient in the 5’->3’ exonuclease of DNA polymerase I, J. Bacteriol., 160, 706, 10.1128/jb.160.2.706-710.1984 O’Brian, 2015, Perception and homeostatic control of iron in the Rhizobia and related bacteria, Annu. Rev. Microbiol., 69, 229, 10.1146/annurev-micro-091014-104432 Escolar, 1999, Opening the iron box: Transcriptional metalloregulation by the fur protein, J. Bacteriol., 181, 6223, 10.1128/JB.181.20.6223-6229.1999 Altuvia, 1994, The dps promoter is activated by OxyR during growth and by IHF and sigmaS in stationary phase, Mol. Microbiol., 13, 265, 10.1111/j.1365-2958.1994.tb00421.x Štovíček, 2017, Microbial community response to hydration–desiccation cycles in desert soil, Sci. Rep., 7, 1, 10.1038/srep45735 Albenberg, 2014, Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota in humans and mice, Gastroenterology, 147, 1055, 10.1053/j.gastro.2014.07.020 Hamada, 2014, cbb3-type cytochrome c oxidases, aerobic respiratory enzymes, impact the anaerobic life of Pseudomonas aeruginosa PAO1, J. Bacteriol., 196, 3881, 10.1128/JB.01978-14 Thauer, 2019, Methyl (Alkyl)-coenzyme M reductases: nickel F-430-containing enzymes involved in anaerobic methane formation and in anaerobic oxidation of methane or of short chain alkanes, Biochemistry, 58, 5198, 10.1021/acs.biochem.9b00164 Kim, 2004, Dehydration of (R)-2-hydroxyacyl-CoA to enoyl-CoA in the fermentation of α-amino acids by anaerobic bacteria, FEMS Microbiol. Rev., 28, 455, 10.1016/j.femsre.2004.03.001 Ragsdale, 2003, Pyruvate ferredoxin oxidoreductase and its radical intermediate, Chem. Rev., 103, 2333, 10.1021/cr020423e Reddy, 2002, Dioxygen inactivation of pyruvate formate-lyase: EPR evidence for the formation of protein-based sulfinyl and peroxyl radicals, Biochemistry, 37, 558, 10.1021/bi972086n Khademian, 2020, Do reactive oxygen species or does oxygen itself confer obligate anaerobiosis? The case of Bacteroides thetaiotaomicron, Mol. Microbiol., 114, 333, 10.1111/mmi.14516 Wexler, 2017, An insider’s perspective: Bacteroides as a window into the microbiome, Nat. Microbiol., 2, 17026, 10.1038/nmicrobiol.2017.26 Imlay, 2019, Evolutionary adaptations that enable enzymes to tolerate oxidative stress, Free Radic. Biol. Med., 140, 1, 10.1016/j.freeradbiomed.2019.01.048 Mus, 2019, Geobiological feedbacks, oxygen, and the evolution of nitrogenase, Free Radic. Biol. Med., 140, 250, 10.1016/j.freeradbiomed.2019.01.050 Fay, 1992, Oxygen relations of nitrogen fixation in cyanobacteria, Microbiol. Rev., 56, 340, 10.1128/mr.56.2.340-373.1992 Schlesier, 2016, A conformational switch triggers nitrogenase protection from oxygen damage by Shethna protein II (FeSII), J. Am. Chem. Soc., 138, 239, 10.1021/jacs.5b10341 Yuan, 2019, O2 sensitivity and H2 production activity of hydrogenases – A review, Biotechnol. Bioeng., 116, 3124, 10.1002/bit.27136 Frey, 2002, Hydrogenases: Hydrogen-activating enzymes, ChemBioChem, 3, 153, 10.1002/1439-7633(20020301)3:2/3<153::AID-CBIC153>3.0.CO;2-B Goris, 2011, A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase, Nat. Chem. Biol., 7, 310, 10.1038/nchembio.555 Toraya, 2016, Diol dehydratase-reactivase is essential for recycling of Coenzyme B12 in diol dehydratase, Biochemistry, 55, 69, 10.1021/acs.biochem.5b01023 Wagner, 2001, YfiD of Escherichia coli and Y061 of bacteriophage T4 as autonomous glycyl radical cofactors reconstituting the catalytic center of oxygen-fragmented pyruvate formate-lyase, Biochem. Biophys. Res. Commun., 285, 456, 10.1006/bbrc.2001.5186 De Paiva, 2003, Antimicrobial activity in vitro of plumbagin isolated from Plumbago species, Mem. Inst. Oswaldo Cruz, 98, 959, 10.1590/S0074-02762003000700017 Inbaraj, 2004, Cytotoxic action of juglone and plumbagin: A mechanistic study using HaCaT keratinocytes, Chem. Res. Toxicol., 17, 55, 10.1021/tx034132s Liu, 2011, Real-time mapping of a hydrogen peroxide concentration profile across a polymicrobial bacterial biofilm using scanning electrochemical microscopy, Proc. Natl. Acad. Sci. U. S. A., 108, 2668, 10.1073/pnas.1018391108 Tong, 2007, Streptococcus oligofermentans inhibits Streptococcus mutans through conversion of lactic acid into inhibitory H2O2: A possible counteroffensive strategy for interspecies competition, Mol. Microbiol., 63, 872, 10.1111/j.1365-2958.2006.05546.x Bedard, 2007, NOX family NADPH oxidases: Not just in mammals, Biochimie, 89, 1107, 10.1016/j.biochi.2007.01.012 Kawahara, 2007, Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes, BMC Evol. Biol., 7, 1, 10.1186/1471-2148-7-109 Vazquez-Torres, 2000, Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase, Science, 287, 1655, 10.1126/science.287.5458.1655 Golubeva, 2006, Salmonella enterica serovar typhimurium periplasmic superoxide dismutase SodCI is a member of the PhoPQ regulon and is induced in macrophages, J. Bacteriol., 188, 7853, 10.1128/JB.00706-06 Gort, 1998, Balance between endogenous superoxide stress and antioxidant defenses, J. Bacteriol., 180, 1402, 10.1128/JB.180.6.1402-1410.1998 Djaman, 2004, Repair of oxidized iron-sulfur clusters in Escherichia coli, J. Biol. Chem., 279, 44590, 10.1074/jbc.M406487200 Barras, 2005, How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins, Adv. Microb. Physiol., 50, 41, 10.1016/S0065-2911(05)50002-X Choudens, 2003, SufA from Erwinia chrysanthemi: Characterization of a scaffold protein required for iron-sulfur cluster assembly, J. Biol. Chem., 33, 1 Jang, 2010, Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate, Mol. Microbiol., 78, 1448, 10.1111/j.1365-2958.2010.07418.x Flint, 1994, Initial kinetic and mechanistic characterization of Escherichia coli fumarase A, Arch. Biochem. Biophys., 311, 509, 10.1006/abbi.1994.1269 Woods, 1988, Two biochemically distinct classes of fumarase in Escherichia coli, Biochim. Biophys. Acta, 954, 14, 10.1016/0167-4838(88)90050-7 Liochev, 1992, Fumarase C, the stable fumarase of Escherichia coli, is controlled by the soxRS regulon, Proc. Natl. Acad. Sci. U. S. A., 89, 5892, 10.1073/pnas.89.13.5892 Flint, 1988, Dihydroxy acid dehydratase from spinach contains a [2Fe-2S] cluster, J. Biol. Chem., 263, 3558, 10.1016/S0021-9258(18)68961-6 Knoll, 2003, The geological consequences of evolution, Geobiology, 1, 3, 10.1046/j.1472-4669.2003.00002.x Sessions, 2009, The continuing puzzle of the Great Oxidation Event, Curr. Biol., 19, R567, 10.1016/j.cub.2009.05.054 Robbins, 2016, Trace elements at the intersection of marine biological and geochemical evolution, Earth Sci. Rev., 163, 323, 10.1016/j.earscirev.2016.10.013