How Health Information Technologies and Artificial Intelligence May Help Rheumatologists in Routine Practice
Tóm tắt
Từ khóa
Tài liệu tham khảo
Khanna NN, Jamthikar AD, Gupta D, et al. Rheumatoid arthritis: atherosclerosis imaging and cardiovascular risk assessment using machine and deep learning–based tissue characterization. Curr Atheroscler Rep. 2019;21(2):7. http://link.springer.com/10.1007/s11883-019-0766-x .
Shortliffe EH, Sepúlveda MJ. Clinical decision support in the era of artificial intelligence. JAMA. 2018;320(21):2199–200.
Conneau A, Schwenk H, Barrault L, Lecun Y (2016) Very deep convolutional networks for natural language processing. 2016;2. arXiv:1606.01781 [cs.CL].
Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9.
Foulquier N, Redou P, Le Gal C, Rouvière B, Pers J-O, Saraux A. Pathogenesis-based treatments in primary Sjogren’s syndrome using artificial intelligence and advanced machine learning techniques: a systematic literature review. Hum Vaccines Immunother. 2018;17:1–6.
Ghahramani Z. Probabilistic machine learning and artificial intelligence. Nature. 2015;521(7553):452–9.
Luo D, Wang P, Lu F, Elias J, Sparks JA, Lee YC. Mobile apps for individuals with rheumatoid arthritis: a systematic review. JCR J Clin Rheumatol. 2018;25:133–41.
Saraux L, Devauchelle-Pensec V, Saraux A. Plea for standardisation of disease activity scores. Rheumatology. 2019. https://doi.org/10.1093/rheumatology/kez117 .
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. 2012. http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networ . Accessed 19 Mar 2019.