How Flow Speed Alters Competitive Outcome in Advective Environments
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bailey, J., & Ollis, D. (1986). Biochemical engineering fundamentals. New York: McGraw-Hill.
Ballyk, M., & Smith, H. (1998). A flow reactor with wall growth. In M. A. Horn (Ed.), Mathematical models in medical and health science (pp. 17–28). Nashville: Vanderbilt University Press.
Ballyk, M., & Smith, H. (1999). A model of microbial growth in a plug flow reactor with wall attachment. Math. Biosci., 158, 95–126.
Ballyk, M., Dung, L., Jones, D. A., & Smith, H. (1998). Effects of random motility on microbial growth and competition in a flow reactor. SIAM J. Appl. Math., 59(2), 573–596.
Berestycki, H., Diekmann, O., Nagelkerke, C., & Zegeling, P. (2009). Can a species keep pace with a shifting climate? Bull. Math. Biol., 71(2), 399–429.
Boldin, B. (2007). Persistence and spread of gastro-intestinal infections: the case of enterotoxigenic escherichia coli in piglets. Bull. Math. Biol., 70(7), 2077–2101.
Cantrell, R. S., & Cosner, C. (2003). Spatial ecology via reaction-diffusion equations. Mathematical and computational biology. New York: Wiley.
Cruywagen, G., Kareiva, P., Lewis, M., & Murray, J. (1996). Competition in a spatially heterogeneous environment: modelling the risk of spread of a genetically engineered population. Theor. Popul. Biol., 49(1), 1–38.
Grover, J., Sze-Bi, H., & Feng-Bin, W. (2009). Competition and coexistence in flowing habitats with a hydraulic storage zone. Math. Biosci., 222, 42–52.
Hershey, A., Pastor, J., Peterson, B., & Kling, G. (1993). Stable isotopes resolve the drift paradox for baetis mayflies in an arctic river. Ecology, 74, 2315–2325.
Huisman, J., Arrayás, M., Ebert, U., & Sommeijer, B. (2002). How do sinking phytoplankton species manage to persist. Am. Nat., 159, 245–254.
Jin, Y., & Lewis, M. (2011). Seasonal influence on population spread and persistence in streams: critical domain size. SIAM J. Appl. Math., 71, 1241–1262.
Lutscher, F., & Lewis, M. A. (2004). Spatially-explicit matrix models. A mathematical analysis of stage-structured integrodifference equations. J. Math. Biol., 48, 293–324.
Lutscher, F., & Seo, G. (2011). The effect of temporal variability on persistence conditions in rivers. J. Theor. Biol., 283, 53–59.
Lutscher, F., Pachepsky, E., & Lewis, M. (2005). The effect of dispersal patterns on stream populations. SIAM Rev., 47(4), 749–772.
Lutscher, F., Lewis, M., & McCauley, E. (2006). The effects of heterogeneity on population persistence and invasion in rivers. Bull. Math. Biol., 68(8), 2129–2160.
Lutscher, F., McCauley, E., & Lewis, M. (2007). Spatial patterns and coexistence mechanisms in rivers. Theor. Popul. Biol., 71(3), 267–277.
Lutscher, F., Nisbet, R., & Pachepsky, E. (2010). Population persistence in the face of advection. Theor. Ecol., 3, 271–284.
Müller, K. (1954). Investigations on the organic drift in North Swedish streams (Technical Report 34). Institute of Freshwater Research, Drottningholm.
Pachepsky, E., Lutscher, F., Nisbet, R., & Lewis, M. A. (2005). Persistence, spread and the drift paradox. Theor. Popul. Biol., 67, 61–73.
Potapov, A., & Lewis, M. (2004). Climate and competition: the effect of moving range boundaries on habitat invasibility. Bull. Math. Biol., 66(5), 975–1008.
Samia, Y., & Lutscher, F. (2010). Coexistence and spread of competitors in heterogeneous landscapes. Bull. Math. Biol., 72, 2089–2112.
Sherratt, J. (2005). An analysis of vegetation stripe formation in semi-arid landscapes. J. Math. Biol., 51, 183–197.
Speirs, D., & Gurney, W. (2001). Population persistence in rivers and estuaries. Ecology, 82(5), 1219–1237.
Strohm, S., & Tyson, R. (2011). The effect of habitat fragmentation on cyclic population dynamics: a reduction to ordinary differential equations. Theor. Ecol.
Van Kirk, R. W., & Lewis, M. A. (1997). Integrodifference models for persistence in fragmented habitats. Bull. Math. Biol., 59(1), 107–137.
Vasilyeva, O. (2011). Modeling and analysis of population dynamics in advective environments. Ph.D. thesis, University of Ottawa.
Vasilyeva, O., & Lutscher, F. (2010). Population dynamics in rivers: analysis of steady states. Can. Appl. Math. Q., 18(4), 439–469.