Hot spots in cold adaptation: Localized increases in conformational flexibility in lactate dehydrogenase A4orthologs of Antarctic notothenioid fishes

Peter A. Fields1, George N. Somero2
1Hopkins Marine Station, Stanford University, Pacific Grove, CA, 93950-3094, USA
2Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950-3094

Tóm tắt

To elucidate mechanisms of enzymatic adaptation to extreme cold, we determined kinetic properties, thermal stabilities, and deduced amino acid sequences of lactate dehydrogenase A4(A4-LDH) from nine Antarctic (−1.86 to 1°C) and three South American (4 to 10°C) notothenioid teleosts. Higher Michaelis–Menten constants (Km) and catalytic rate constants (kcat) distinguish orthologs of Antarctic from those of South American species, but no relationship exists between adaptation temperature and the rate at which activity is lost because of heat denaturation. In all species, active site residues are conserved fully, and differences inkcatandKmare caused by substitutions elsewhere in the molecule. Within geographic groups, identical kinetic properties are generated by different substitutions. By combining our data with A4-LDH sequences for other vertebrates and information on roles played by localized conformational changes in settingkcat, we conclude that notothenioid A4-LDHs have adapted to cold temperatures by increases in flexibility in small areas of the molecule that affect the mobility of adjacent active-site structures. Using these findings, we propose a model that explains linked temperature-adaptive variation inKmandkcat. Changes in sequence that increase flexibility of regions of the enzyme involved in catalytic conformational changes may reduce energy (enthalpy) barriers to these rate-governing shifts in conformation and, thereby, increasekcat. However, at a common temperature of measurement, the higher configurational entropy of a cold-adapted enzyme may foster conformations that bind ligands poorly, leading to highKmvalues relative to warm-adapted orthologs.

Từ khóa


Tài liệu tham khảo

A R Cossins, K Bowler Temperature Biology of Animals (Chapman & Hall, New York, 1987).

P A Fields, G N Somero J Exp Biol 200, 1839–1850 (1997).

L Z Holland, M C McFall-Ngai, G N Somero Biochemistry 36, 3207–3215 (1997).

J T Eastman Antarctic Fish Biology (Academic, New York, 1993).

I A Johnston, J Calvo, H Guderley, D Fernandez, L Palmer J Exp Biol 201, 1–12 (1998).

J P Kennett J Geophys Res 82, 3843–3860 (1977).

L B Chen, A L DeVries, C H Cheng Proc Natl Acad Sci USA 94, 3811–3816 (1994).

L Bargelloni, P A Ritchie, T Patarnello, B Battaglia, D M Lambert, A Meyer Mol Biol Evol 11, 854–863 (1994).

G N Somero, A L DeVries Science 156, 257–258 (1967).

R B Weinstein, G N Somero J Comp Physiol B 168, 190–196 (1998).

A L DeVries Comp Biochem Physiol B 90, 611–621 (1988).

J T Rudd Nature (London) 173, 848–850 (1954).

E Cocca, M Raynayake-Lecamwasam, S K Parker, L Camardella, M Ciaramella, G di Prisco, H W Detrich Proc Natl Acad Sci USA 92, 1817–1821 (1995).

B D Sidell, M E Vayda, D J Small, T J Moylan, R L Londraville, M-L Yuan, K J Rodnick, Z A Eppley, L Costello Proc Natl Acad Sci USA 94, 3420–3424 (1997).

G di Prisco, S G Condo, M Tamburrini, B Giardina Trends Biochem Sci 16, 471–474 (1991).

P H Yancey, G N Somero J Comp Physiol B 125, 129–134 (1978).

G N Somero Annu Rev Physiol 57, 43–68 (1995).

J E Graves, G N Somero Evolution 36, 97–106 (1982).

P W Hochachka, G N Somero Biochemical Adaptation (Princeton Univ. Press, Princeton, 1984).

R Jaenicke Eur J Biochem 202, 715–728 (1991).

A R Place, D A Powers J Biol Chem 259, 1309–1318 (1984).

C Abad-Zapatero, J P Griffith, J L Sussman, M G Rossmann J Mol Biol 198, 445–467 (1987).

C R Dunn, H M Wilks, D J Halsall, T Atkinson, A R Clarke, H Muirhead, J J Holbrook Philos Trans R Soc Lond B 332, 177–184 (1991).

M Gerstein, C Chothia J Mol Biol 220, 133–149 (1991).

R B Reeves Annu Rev Physiol 39, 559–586 (1977).

S P J Brooks, C H Suelter Int J Biomed Comput 19, 89–99 (1986).

G N Wilkinson Biochem J 80, 323–332 (1961).

A Pesce, T P Fondy, F Stolzenbach, F Castillo, N O Kaplan J Biol Chem 242, 2151–2167 (1967).

J M Quattro, D D Pollock, M Powell, H A Woods, D A Powers Mol Mar Biol Biotechnol 4, 224–231 (1995).

J van Beek, R Callender, M R Gunner Biophys J 72, 619–626 (1997).

R Sakowicz, H K Kallwass, W Parris, C M Kay, J B Jones, M Gold Biochemistry 32, 12730–12735 (1993).

A R Clarke, H M Wilks, D A Barstow, T Atkinson, W N Chia, J J Holbrook Biochemistry 27, 1617–1622 (1988).

A V Balushkin J Ichthyol (Engl Transl) 32, 90–110 (1992).

O Gon, P C Heemstra Fishes of the Southern Ocean (J. L. B. Smith Institute of Ichthyology, Grahamstown, South Africa, 1990).

E L Crockett, B D Sidell Physiol Zool 63, 472–488 (1990).

C Agnisola, R Acierno, J Calvo, F Farina, B Tota Comp Biochem Physiol A 118, 1437–1445 (1997).

G N Somero Biology of Antarctic Fish, eds G di Prisco, B Maresca, B Tota (Springer, Berlin), pp. 232–247 (1991).

H Deng, J Zheng, A Clarke, J J Holbrook, R Callender, J W, II Burgner Biochemistry 33, 2297–2305 (1994).

B W Matthews, H Nicholson, W J Becktel Proc Natl Acad Sci USA 84, 6663–6667 (1987).

S Davail, G Feller, E Narinx, C Gerday J Biol Chem 269, 17448–17453 (1994).

V J Hilser, E Freire J Mol Biol 263, 756–772 (1996).

P Závodsky, J Kardos, A Svingor, G A Petsko Proc Natl Acad Sci USA 95, 7406–7411 (1998).

P S Low, J L Bada, G N Somero Proc Natl Acad Sci USA 70, 430–432 (1973).