Hot deformation characteristics and microstructure evolution of Al20Co36Cr4Fe4Ni36 eutectic high entropy alloy
Tài liệu tham khảo
Yeh, 2004, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 299, 10.1002/adem.200300567
Cantor, 2004, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377, 213, 10.1016/j.msea.2003.10.257
Lu, 2014, A promising new class of high-temperature alloys: eutectic high-entropy alloys, Rep, 4, 6200
Lu, 2020, Promising properties and future trend of eutectic high entropy alloys, Scr. Mater., 187, 202, 10.1016/j.scriptamat.2020.06.022
Lu, 2017, Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range, Acta Mater., 124, 143, 10.1016/j.actamat.2016.11.016
Jin, 2018, A novel Fe20Co20Ni41Al19 eutectic high entropy alloy with excellent tensile properties, Mater. Lett., 216, 144, 10.1016/j.matlet.2018.01.017
Jin, 2018, A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration, Mater. Des., 143, 49, 10.1016/j.matdes.2018.01.057
Yang, 2019, Enhancing the mechanical properties of casting eutectic high entropy alloys with Mo addition, Appl. Phys. A, 125, 1, 10.1007/s00339-019-2506-z
Wu, 2019, A casting eutectic high entropy alloy with superior strength-ductility combination, Mater. Lett., 253, 268, 10.1016/j.matlet.2019.06.067
Shi, 2021, A precipitate-free AlCoFeNi eutectic high-entropy alloy with strong strain hardening, J. Mater. Sci. Technol., 89, 88, 10.1016/j.jmst.2021.03.005
Shi, 2021, Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys, Science, 373, 912, 10.1126/science.abf6986
Glicksman, 2011
Chanda, 2020, A review on nano−/ultrafine advanced eutectic alloys, J. Alloys Compd., 827, 10.1016/j.jallcom.2020.154226
Wang, 2021, A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures, Scr. Mater., 204, 10.1016/j.scriptamat.2021.114132
Cui, 2022, Enhancing high temperature mechanical properties via modulating B2 phase with Al contents in FeCrNiAlx(x = 0.63,0.71,0.77) high entropy alloys, J. Alloys Compd., 903, 10.1016/j.jallcom.2022.163883
Vikram, 2021, Design of a new cobalt base nano-lamellar eutectic high entropy alloy, Scr. Mater., 202, 10.1016/j.scriptamat.2021.113993
Xu, 2020, Microstructures and mechanical properties of CoCrFeNiHfx high-entropy alloys, Mater. Sci. Eng. A, 792, 10.1016/j.msea.2020.139820
Jiang, 2019, Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding thermal stability, Scr. Mater., 165, 145, 10.1016/j.scriptamat.2019.02.035
Hasannaeimi, 2019, Surface degradation mechanisms in a eutectic high entropy alloy at microstructural length-scales and correlation with phase-specific work function, npj Mater. Degrad., 3, 16, 10.1038/s41529-019-0079-0
Lu, 2021, Y-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation resistance and structure stability at 1000°C and 1100°C, Corros. Sci., 180, 10.1016/j.corsci.2020.109191
Jie Lu, 2021, Y-Hf Co-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation and spallation resistance under thermal cycling conditions at 1100° C and 1200° C, Corros. Sci., 187
Han, 2020, Revealing the excellent high-temperature oxidation resistance of a non-equimolar Al1Co25Cr18Fe23Ni23Ta10 compositional complex eutectic alloy, J. Alloys Compd., 846, 10.1016/j.jallcom.2020.156265
Shuang, 2022, Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy, J. Mater. Sci. Technol., 109, 197, 10.1016/j.jmst.2021.08.069
Wani, 2016, Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing, Mater. Sci. Eng. A, 675, 99, 10.1016/j.msea.2016.08.048
Shi, 2020, Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys, Mater. Today, 41, 62, 10.1016/j.mattod.2020.09.029
Reddy, 2019, Microstructural design by severe warm-rolling for tuning mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy, Intermetallics, 114, 10.1016/j.intermet.2019.106601
Xiong, 2020, High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure, Scr. Mater., 186, 336, 10.1016/j.scriptamat.2020.04.035
Shi, 2019, Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae, Nat. Commun., 10, 489, 10.1038/s41467-019-08460-2
Jin, 2020, Enhanced strength and ductility of Al0.9CoCrNi2.1 eutectic high entropy alloy by thermomechanical processing, Materialia, 10, 10.1016/j.mtla.2020.100639
Reddy, 2019, Engineering heterogeneous microstructure by severe warm-rolling for enhancing strength-ductility synergy in eutectic high entropy alloys, Mater. Sci. Eng. A, 764, 10.1016/j.msea.2019.138226
Wani, 2017, Cold-rolling and recrystallization textures of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy, Intermetallics, 84, 42, 10.1016/j.intermet.2016.12.018
Rahul, 2018, Experimental and finite element simulation studies on hot deformation behaviour of AlCoCrFeNi2.1 eutectic high entropy alloy, J. Alloys Compd., 749, 1115, 10.1016/j.jallcom.2018.03.262
Jain, 2020, Hot workability of Co-Fe-Mn-Ni-Ti eutectic high entropy alloy, J. Alloys Compd., 822, 10.1016/j.jallcom.2019.153609
Jeong, 2021, Dynamic recrystallization and hot deformation mechanisms of a eutectic Al0.7CoCrFeMnNi high-entropy alloy, J. Alloys Compd., 871, 10.1016/j.jallcom.2021.159488
Shah, 2021, Microstructure stability during high temperature deformation of CoCrFeNiTa eutectic high entropy alloy through nano-scale precipitation, Mater. Sci. Eng. A, 824, 10.1016/j.msea.2021.141793
Liu, 2022, Tailoring microstructures of CoCrFeNiNb0.25 hypoeutectic high-entropy alloy by hot deformation, Rare Metals, 41, 2028, 10.1007/s12598-021-01932-9
Asadikiya, 2021, A review of the design of high-entropy aluminum alloys: a pathway for novel Al alloys, J. Mater. Sci., 56, 12093, 10.1007/s10853-021-06042-6
Wang, 2022, A new method to design eutectic high-entropy alloys by determining the formation of single-phase solid solution and calculating solidification paths, Mater. Sci. Eng. A, 830, 10.1016/j.msea.2021.142325
Jiang, 2021, Effects of chromium on the microstructures and mechanical properties of AlCoCrxFeNi2.1 eutectic high entropy alloys, Acta Metal. Sin. (Engl. Lett.), 34, 1565, 10.1007/s40195-021-01303-4
Yurchenko, 2021, Design and characterization of eutectic refractory high entropy alloys, Materialia, 16, 10.1016/j.mtla.2021.101057
Qiao, 2021, The mechanical and oxidation properties of novel B2-ordered Ti2ZrHf0.5VNb0.5Alx refractory high-entropy alloys, Mater. Charact., 178, 10.1016/j.matchar.2021.111287
Chen, 2018, The microstructure and mechanical properties of refractory high-entropy alloys with high plasticity, Materials, 11, 208, 10.3390/ma11020208
Yurchenko, 2017, Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x= 0-1.5) high-entropy alloys, Mater. Sci. Eng. A, 704, 82, 10.1016/j.msea.2017.08.019
Tong, 2005, Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A, 36, 1263, 10.1007/s11661-005-0218-9
Shaysultanov, 2017, Novel Fe36Mn21Cr18Ni15Al10 high entropy alloy with bcc/B2 dual-phase structure, J. Alloys Compd., 705, 756, 10.1016/j.jallcom.2017.02.211
Yurchenko, 2017, Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x=0-1.5) high-entropy alloys, Mater. Sci. Eng. A, 704, 82, 10.1016/j.msea.2017.08.019
Chen, 2018, Interstitial strengthening of refractory ZrTiHfNb0. 5Ta0. 5Ox (x=0.05, 0.1, 0.2) high-entropy alloys, Mater. Lett., 228, 145, 10.1016/j.matlet.2018.05.123
Feng, 2021, High-throughput design of high-performance lightweight high-entropy alloys, Nat. Commun., 12, 4329, 10.1038/s41467-021-24523-9
Stallybrass, 2004, Ferritic Fe-Al-Ni-Cr alloys with coherent precipitates for high-temperature applications, Mater. Sci. Eng. A, 387, 985, 10.1016/j.msea.2004.01.108
Senkov, 2013, Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system, Mater. Sci. Eng. A, 565, 51, 10.1016/j.msea.2012.12.018
Wang, 2023, Lightweight, ultrastrong and high thermal-stable eutectic high-entropy alloys for elevated-temperature applications, Acta Mater., 248, 10.1016/j.actamat.2023.118806
Bai, 2021, Unique deformation behavior and microstructure evolution in high-temperature processing of a low-density TiAlVNb2 refractory high-entropy alloy, J. Alloys Compd., 885, 10.1016/j.jallcom.2021.160962
Doherty, 1998, Current issues in recrystallization: a review, Mater. Today, 1, 14, 10.1016/S1369-7021(98)80046-1
Liu, 2020, Effect of alloying additions on work hardening, dynamic recrystallization, and mechanical properties of Ti-44Al-5Nb-1Mo alloys during direct hot-pack rolling, Mater. Sci. Eng. A, 773, 10.1016/j.msea.2019.138838
Sakai, 2014, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci., 60, 130, 10.1016/j.pmatsci.2013.09.002
Qun, 2010, Warm deformation behavior of steels containing carbon of 0. 45% to 1. 26% with martensite starting structure, J. Iron Steel Res. Int., 17, 34, 10.1016/S1006-706X(10)60096-9
Sellars, 1966, On the mechanism of hot deformation, Acta Metall., 14, 1136, 10.1016/0001-6160(66)90207-0
Lin, 2022, Study on hot deformation behavior and processing map of a Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy with a fully lamellar microstructure, J. Alloys Compd., 901, 10.1016/j.jallcom.2022.163648
Jain, 2022, Constitutive and artificial neural network modeling to predict hot deformation behavior of CoFeMnNiTi eutectic high-entropy alloy, J. Mater. Eng. Perform., 1
Sherby, 1968, Mechanical behavior of crystalline solids at elevated temperature, Prog. Mater. Sci., 13, 323, 10.1016/0079-6425(68)90024-8
Garofalo, 1963, An empirical relation defining the stress dependence of minimum creep rate in metals, Trans. AIME, 227, 351
Ahmed, 2020, Influence of process parameters on microstructure evolution during hot deformation of a eutectic high-entropy alloy (EHEA), Metall. Mater. Trans. A, 51, 6406, 10.1007/s11661-020-05991-y
Zener, 1944, Effect of strain rate upon plastic flow of steel, J. Appl. Phys., 15, 22, 10.1063/1.1707363
Wang, 2021, Hot compression behaviors and microstructure evolutions of a cast dual-phase NiCoFeCrAl0.7 high-entropy alloy, Intermetallics, 138, 10.1016/j.intermet.2021.107314
Yang, 2023, Deformation behavior and dynamic recrystallization mechanism of a novel high Nb containing TiAl alloy in (α + γ) dual-phase field, J. Alloys Compd., 945, 10.1016/j.jallcom.2023.169250
Lv, 2019, Superplastic deformation and dynamic recrystallization of a novel disc superalloy GH4151, Materials (Basel), 12, 3667, 10.3390/ma12223667
Mao, 2021, Hot deformation behavior and related microstructure evolution in Au-Sn eutectic multilayers, Trans. Nonferrous Metals Soc. China, 31, 1700, 10.1016/S1003-6326(21)65609-1
Dong, 2020, Hot deformation behavior and processing maps of an equiatomic MoNbHfZrTi refractory high entropy alloy, Intermetallics, 126, 10.1016/j.intermet.2020.106921
Huang, 2016, A review of dynamic recrystallization phenomena in metallic materials, Mater. Des., 111, 548, 10.1016/j.matdes.2016.09.012
Gourdet, 2000, An experimental study of the recrystallization mechanism during hot deformation of aluminium, Mater. Sci. Eng. A, 283, 274, 10.1016/S0921-5093(00)00733-4
Kaibyshev, 2005, Continuous dynamic recrystallization in an Al-Li-Mg-Sc alloy during equal-channel angular extrusion, Mater. Sci. Eng. A, 396, 341, 10.1016/j.msea.2005.01.053
Sitdikov, 2009, Temperature effect on fine-grained structure formation in high-strength Al alloy 7475 during hot severe deformation, Mater. Sci. Eng. A, 516, 180, 10.1016/j.msea.2009.03.037
Yanushkevich, 2015, Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773-1273 K, Acta Mater., 82, 244, 10.1016/j.actamat.2014.09.023
Lv, 2020, Hot deformation characteristics and dynamic recrystallization mechanisms of a novel nickel-based superalloy, Adv. Eng. Mater., 22, 2000622, 10.1002/adem.202000622