Hot compressed water as reaction medium and reactant
Tóm tắt
Từ khóa
Tài liệu tham khảo
Franck, 1961, Überkritisches Wasser als elektrolytisches Lösungsmittel, Angew. Chem., 73, 309, 10.1002/ange.19610731003
Heger, 1980, The static dielectric constant of water at high pressures and temperatures to 500MPa and 550°C, Ber. Bunsen-Ges. Phys. Chem., 84, 758, 10.1002/bbpc.19800840814
Marshall, 1981, Ion product of water substance, 0–1000°C, 1–10,000bar new international formulation and its background, J. Phys. Chem. Ref. Data, 10, 295, 10.1063/1.555643
Weingärtner, 2005, Supercritical water as a solvent, Angew. Chem (Int. Ed. Engl.), 44, 2672, 10.1002/anie.200462468
Neichel, 1995, Critical curves and phase equilibria of binary methanol-systems for high pressures and temperatures, Zeitschrift fur Naturforschung, Teil A (Physik, Physikalische Chemie, Kosmophysik), 50, 439
Franck, 1974, The system water–xenon at high pressures and temperatures, Zeitschrift fur Physikalische Chemie. Neue Folge, 93, 95, 10.1524/zpch.1974.93.1-6.095
Eckert, 1998, Tuning fluid solvents for chemical reactions, J. Supercrit. Fluids, 13, 187, 10.1016/S0896-8446(98)00051-5
Akiya, 2000, Roles of water for chemical reactions in high-temperature water, Chem. Rev., 102, 2725, 10.1021/cr000668w
Franck, 1983, Thermophysical properties of supercritical fluids with special consideration of aqueous systems, Fluid Phase Equilibr., 10, 211, 10.1016/0378-3812(83)80035-1
E.U. Franck, H. Weingärtner, Chemical Thermodynamics. A Chemistry for the 21st Century Monograph, 1999, pp. 105–119.
C.A. Meyer, R.B. McClintock, G.J. Silvestri, R.C. Spencer, Jr., Steam Tables—Thermodynamic and Transport Properties of Steam, 1992.
Franck, 1990, Calculation of the dielectric constant of water to 1000°C and very high pressures, Berichte der Bunsengesellschaft für Physikalische Chemie, 94, 199, 10.1002/bbpc.19900940219
Tester, 1998, Chemical reactions and phase equilibria of model halocarbons and salts in sub- and supercritical water (200–300bar, 100–600°C), J. Supercrit. Fluids, 13, 225, 10.1016/S0896-8446(98)00056-4
Heilig, 1990, Phase equilibria of multicomponent fluid systems to high pressures and temperatures, Berichte der Bunsengesellschaft für Physikalische Chemie, 94, 27, 10.1002/bbpc.19900940107
Japas, 1985, High pressure phase equilibria and PVT-data of the water-nitrogen system to 673K and 250MPa, Berichte der Bunsengesellschaft für Physikalische Chemie, 89, 793, 10.1002/bbpc.19850890714
Hakuta, 2005, Effects of hydrothermal synthetic conditions on the particle size of γ-AlO(OH) in sub and supercritical water using a flow reaction system, Mater. Chem. Phys., 93, 466, 10.1016/j.matchemphys.2005.03.047
Hakuta, 2005, Effect of water density on polymorph of BaTiO3 nanoparticles synthesized under sub and supercritical water conditions, Mater. Lett., 59, 1387, 10.1016/j.matlet.2004.11.063
Sue, 2004, Hydrothermal synthesis of ZnO nanocrystals using microreactor, Mater. Lett., 58, 3229, 10.1016/j.matlet.2004.06.016
Sue, 2004, Rapid hydrothermal synthesis of ZnO nanorods without organics, Mater. Lett., 58, 3350, 10.1016/j.matlet.2004.06.036
Sue, 2004, Effect of cations and anions on properties of zinc oxide particles synthesized in supercritical water, J. Supercrit. Fluids, 30, 325, 10.1016/j.supflu.2003.09.009
Hakuta, 1999, Chemical equilibria and particle morphology of boehmite (AlOOH) in sub and supercritical water, Fluid Phase Equilibr., 158-160, 733, 10.1016/S0378-3812(99)00118-1
Hakuta, 2003, Continuous production of phosphorus YAG:Tb nanoparticles by hydrothermal synthesis in supercritical water, Mater. Res. Bull., 38, 1257, 10.1016/S0025-5408(03)00088-6
Onwudili, 2006, Flameless incineration of pyrene under sub-critical and supercritical water conditions, Fuel, 85, 75, 10.1016/j.fuel.2005.06.007
Barner, 1992, Supercritical water oxidation: an emerging technology, J. Hazard. Mater., 31, 1, 10.1016/0304-3894(92)87035-E
Gloyna, 1994, Engineering aspects of supercritical water oxidation, Water Sci. Technol., 30, 1, 10.2166/wst.1994.0432
Gloyna, 1993, Supercritical water oxidation: an engineering update, Waste Manage., 13, 379, 10.1016/0956-053X(93)90071-4
Hodes, 2004, Salt precipitation and scale control in supercritical water oxidation—Part A: fundamentals and research, J. Supercrit. Fluids, 29, 265, 10.1016/S0896-8446(03)00093-7
Kritzer, 2001, An assessment of supercritical water oxidation (SCWO): existing problems, possible solutions and new reactor concepts, Chem. Eng. J., 83, 207, 10.1016/S1385-8947(00)00255-2
Matubayasi, 2000, Super- and subcritical hydration of nonpolar solutes. I. Thermodynamics of hydration, J. Chem. Phys., 112, 8089, 10.1063/1.481409
Lu, 2001, Polarity and hydrogen-bonding of ambient to near-critical water: Kamlet–Taft solvent parameters, Chem. Commun., 665, 10.1039/b100425p
Savage, 1995, Reactions at supercritical conditions: applications and fundamentals, AIChE J., 41, 1723, 10.1002/aic.690410712
Hunter, 2004, Recent advances in acid- and base-catalyzed organic synthesis in high-temperature liquid water, Chem. Eng. Sci., 22/23, 4903, 10.1016/j.ces.2004.09.009
Watanabe, 2003, Acidity and basicity of metal oxide catalysts for formaldehyde reaction in supercritical water at 673K, Appl. Catal. A: Gen., 245, 333, 10.1016/S0926-860X(02)00656-7
Krammer, 2000, Hydrolysis of esters in subcritical and supercritical water, J. Supercrit. Fluids, 16, 189, 10.1016/S0896-8446(99)00032-7
Bühler, 2002, Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water, J. Supercrit. Fluids, 22, 37, 10.1016/S0896-8446(01)00105-X
Hippler, 1997, Elementary reactions in supercritical fluids, 279
Ederer, 1999, Modelling of the pyrolysis of tert-butylbenzene in supercritical water, J. Supercrit. Fluids, 15, 191, 10.1016/S0896-8446(99)00013-3
Klein, 1997, 543
Matubayasi, 1999, Structural study of supercritical water. II. Computer simulations, J. Chem. Phys., 110, 8000, 10.1063/1.478728
Akiya, 2000, Effect of water density on hydrogen peroxide dissociation in supercritical water. 1. Reaction equilibrium, Ind. Eng. Chem. Res., 104, 4433
Akiya, 2000, Effect of water density on hydrogen peroxide dissociation in supercritical water. 2. Reaction kinetics, J. Phys. Chem. A, 104, 4441, 10.1021/jp9921001
Zhang, 2004, Heck coupling reaction of iodobenzene and styrene using supercritical water in the absence of a catalyst, Chemistry, 10, 1501, 10.1002/chem.200305542
Coitiño, 1994, Importance of water in aldol condensation reactions of acetaldehyde, J. Chem. Soc. Faraday Transact., 90, 1745, 10.1039/FT9949001745
Wang, 1995, The influence of high-temperature water on the reaction pathways of nitroanilines, J. Supercrit. Fluids, 8, 236, 10.1016/0896-8446(95)90036-5
Hori, 2003, Hybrid quantum chemical studies for the methanol formation reaction assisted by the proton transfer mechanism in supercritical water: CH3Cl+nH2O→CH3OH+HCl+(n−1)H2O, J. Chem. Phys., 119, 8492, 10.1063/1.1611175
Belsky, 1999, Spectroscopy of hydrothermal reactions 13. Kinetics and mechanisms of decarboxylation of acetic acid derivatives at 100–260°C under 275bar, J. Phys. Chem. A, 103, 4253, 10.1021/jp984122d
Kalinichev, 2001, Molecular simulations of liquid and supercritical water: thermodynamics, structure and hydrogen bonding, 83
Cummings, 1994, Molecular simulation study of solvation structure in supercritical aqueous solutions, Chem. Eng. Sci., 49, 2735, 10.1016/0009-2509(94)E0094-7
Cummings, 1991, Simulation of supercritical water and of supercritical aqueous solutions, J. Chem. Phys., 94, 5606, 10.1063/1.460497
Sato, 1999, Ab initio study of water. II. Liquid structure, electronic and thermodynamic properties over a wide range of temperature and density, J. Chem. Phys., 111, 8545, 10.1063/1.480195
Jedlovszky, 1999, Comparison of different water models from ambient to supercritical conditions: a Monte Carlo simulation and molecular Ornstein-Zernike study, J. Chem. Phys., 110, 8019, 10.1063/1.478704
Seward, 2004, Hydrothermal solution structure: experiments and computer simulation, 149
Partay, 2005, Line of percolation in supercritical water, J. Chem. Phys., 123, 24502, 10.1063/1.1953547
Boero, 2004, Hydrogen bond driven chemical reactions: Beckmann rearrangement of cyclohexanone oxime into epsilon-caprolactam in supercritical water, J. Am. Chem. Soc., 126, 6280, 10.1021/ja049363f
Nakahara, 2001, Structure and dynamics of water: from ambient to supercritical, J. Mol. Liq., 90, 75, 10.1016/S0167-7322(01)00109-X
Marques Leite dos Santos, 2004, Topology of the hydrogen bond networks in liquid water at room and supercritical conditions: a small-world structure, Chem. Phys. Lett., 390, 157, 10.1016/j.cplett.2004.04.016
Matubayasi, 1997, NMR study of water structure in super- and subcritical conditions, Phys. Rev. Lett., 78, 2573, 10.1103/PhysRevLett.78.2573
Sebastiani, 2002, Ab-initio study of NMR chemical shifts of water under normal and supercritical conditions, Chemphyschem: Eur. J. Chem. Phys. Phys. Chem., 3, 675, 10.1002/1439-7641(20020816)3:8<675::AID-CPHC675>3.0.CO;2-O
Yamaguchi, 1998, Structure of subcritical and supercritical hydrogen-bonded liquids and solutions, J. Mol. Liq., 78, 43, 10.1016/S0167-7322(98)00083-X
Bellissent-Funel, 2001, Structure of supercritical water, J. Mol. Liq., 90, 313, 10.1016/S0167-7322(01)00135-0
Beta, 2003, A quasi-elastic neutron scattering study of the dynamics of supercritical water, Chem. Phys., 292, 229, 10.1016/S0301-0104(03)00228-3
Goodyear, 1999, Glass-like behavior in supercritical fluids: the effect of critical slowing down on solute dynamics, J. Chem. Phys., 111, 9673, 10.1063/1.480299
Tucker, 1998, The effect of solvent density inhomogeneities on dynamics in supercritical fluids: a theoretical perspective, J. Phys. Chem. B, 102, 2437, 10.1021/jp972382+
Svishchev, 2005, Hydroxyl radical in aqueous solution: computer simulation, J. Phys. Chem. B, 109, 4123, 10.1021/jp046273o
Ikushima, 2003, Noncatalytic Heck coupling reaction using supercritical water, Chem. Commun., 1548
Ikushima, 2003, Innovations in chemical reaction processes using supercritical water: an environmental application to the production of ɛ-caprolactam, Chem. Eng. Sci., 58, 935, 10.1016/S0009-2509(02)00631-0
Ikushima, 2001, Structure and base catalysis of supercritical water in the noncatalytic benzaldehyde disproportionation using water at high temperatures and pressures, Angew. Chem. Int. Ed., 40, 210, 10.1002/1521-3773(20010105)40:1<210::AID-ANIE210>3.0.CO;2-7
Ikushima, 2000, Acceleration of synthetic organic reactions using supercritical water: noncatalytic Beckmann und pinacol rearrangements, J. Am. Chem. Soc., 122, 1908, 10.1021/ja9925251
Ikushima, 1999, Noncatalytic organic synthesis using supercritical water: the peculiarity near the critical point, Angew. Chem. Int. Ed., 38, 2910, 10.1002/(SICI)1521-3773(19991004)38:19<2910::AID-ANIE2910>3.0.CO;2-C
Ikushima, 1998, An in situ Raman spectroscopy study of subcritical and supercritical water: the peculiarity of hydrogen bonding near the critical point, J. Chem. Phys., 108, 5855, 10.1063/1.475996
Ikushima, 2004, A one-step production of fine chemicals using supercritical water: an environmental benign application to the synthesis of monoterpene alcohol, Chem. Eng. Sci., 59, 4895, 10.1016/j.ces.2004.08.035
Boero, 2004, Hydrogen bond driven chemical reactions: Beckmann rearrangement of cyclohexanone oxime into caprolactam in supercritical water, J. Am. Chem. Soc., 126, 6280, 10.1021/ja049363f
Chialvo, 1997, Molecular simulation study of speciation in supercritical aqueous NaCl solutions, J. Mol. Liq., 73-74, 361, 10.1016/S0167-7322(97)00079-2
Cochran, 1992, Solvation in supercritical water, Fluid Phase Equilibr., 71, 1, 10.1016/0378-3812(92)85001-O
de Pablo, 1990, Molecular simulation of water along the liquid–vapor coexistence curve from 25°C to the critical point, J. Chem. Phys., 93, 7355, 10.1063/1.459409
Lee, 1998, Molecular dynamics simulation of the limiting conductance of NaCl in supercritical water, Chem. Phys. Lett., 293, 289, 10.1016/S0009-2614(98)00766-0
Cui, 1994, Ion association and liquid structure in supercritical water solutions of sodium chloride: a microscopic view from molecular dynamics simulations, Chem. Eng. Sci., 49, 2749, 10.1016/0009-2509(94)E0095-8
Driesner, 1998, Molecular dynamics simulation study of ionic hydration and ion association in dilute and 1 molal aqueous sodium chloride solutions from ambient to supercritical conditions, Geochim. Cosmochim. Acta, 62, 3095, 10.1016/S0016-7037(98)00207-5
Balbuena Perla, 1996, Molecular dynamics simulation of electrolyte solutions in ambient and supercritical water. 1. Ion solvation, J. Phys. Chem., 100, 2706, 10.1021/jp952194o
Fulton, 1996, Rubidium ion hydration in ambient and supercritical water, J. Chem. Phys., 105, 2161, 10.1063/1.472089
Seward, 1996, An X-ray absorption (EXAFS) spectroscopic study of aquated Ag+ in hydrothermal solutions to 350°C, Geochim. Cosmochim. Acta, 60, 2273, 10.1016/0016-7037(96)00098-1
Seward, 1999, An EXAFS study of solvation and ion pairing in aqueous strontium solutions to 300°C, Geochim. Cosmochim. Acta, 63, 2409, 10.1016/S0016-7037(99)00200-8
Simonet, 2002, Structure of aqueous ZnBr2 solution probed by X-ray absorption spectroscopy in normal and hydrothermal conditions, J. Chem. Phys., 116, 2997, 10.1063/1.1433499
Simonet, 2002, X-ray absorption spectroscopy studies of ionic association in aqueous solutions of zinc bromide from normal to critical conditions, J. Chem. Phys., 117, 2771, 10.1063/1.1490588
Walrafen, 2005, New spectroscopic method for aqueous solutions: Raman xi-function dispersion for NaClO4 in water, J. Chem. Phys., 122, 94510, 10.1063/1.1856918
Balbuena Perla, 1996, Molecular dynamics simulation of electrolyte solutions in ambient and supercritical water. 2. Relative acidity of HCl, J. Phys. Chem., 100, 2716, 10.1021/jp952195g
Yamaguchi, 1996, Chloride-ion hydration in supercritical water by neutron diffraction, Chem. Phys. Lett., 252, 317, 10.1016/0009-2614(96)00186-8
Chialvo, 1995, Na–Cl ion pair association in supercritical water, J. Chem. Phys., 103, 9379, 10.1063/1.470707
Zhang, 2004, Lithium chloride ionic association in dilute aqueous solution: a constrained molecular dynamics study, Chem. Phys., 297, 221, 10.1016/j.chemphys.2003.10.030
Brodholt, 1998, Molecular dynamics simulations of aqueous NaCl solutions at high pressures and temperatures, Chem. Geol., 151, 11, 10.1016/S0009-2541(98)00066-7
Goemans, 1997, Electrical conductances of aqueous solutions of inorganic nitrates at 25–505°C and 100–490bar, J. Supercrit. Fluids, 11, 61, 10.1016/S0896-8446(97)00009-0
Yagasaki, 2005, A theoretical study on anomalous temperature dependence of pK(w) of water, J. Chem. Phys., 122, 144504, 10.1063/1.1878712
Takahashi, 2005, An application of the novel quantum mechanical/molecular mechanical method combined with the theory of energy representation: an ionic dissociation of a water molecule in the supercritical water, J. Chem. Phys., 122, 44504, 10.1063/1.1839858
Oka, 2003, UV absorption solvatochromic shift of 4-nitroaniline in supercritical water, Phys. Chem. Chem. Phys., 5, 2535, 10.1039/b211848n
Kometani, 2004, UV spectral shift of benzene in sub- and supercritical water, Chem. Phys. Lett., 394, 85, 10.1016/j.cplett.2004.06.115
Aizawa, 2004, Local density augmentation around acetophenone N,N,N′,N′-tetramethylbenzidine exciplex in supercritical water, Chem. Phys. Lett., 393, 31, 10.1016/j.cplett.2004.05.100
Kruse, 2005, Influence of salts during hydrothermal biomass gasification: the role of the catalysed water-gas shift reaction, Z. Phys. Chem., 219, 341, 10.1524/zpch.219.3.341.59177
Shibasaki, 2004, Decomposition reactions of plastic model compounds in sub- and supercritical water, Polym. Degrad. Stabil., 83, 481, 10.1016/j.polymdegradstab.2003.09.010
Su, 2004, Investigation on degradation of polyethylene to oils in supercritical water, Fuel Process. Technol., 85, 1249, 10.1016/j.fuproc.2003.11.044
Sugimoto, 2004, Raman spectroscopic study on the local structure around O2 in supercritical water, J. Supercrit. Fluids, 32, 293, 10.1016/j.supflu.2003.12.011
Nieto-Draghi, 2004, Dynamical and structural properties of benzene in supercritical water, J. Chem. Phys., 121, 10566, 10.1063/1.1804942
Takebayashi, 2004, Acetone hydration in supercritical water: (13)C NMR spectroscopy and Monte Carlo simulation, J. Chem. Phys., 120, 6100, 10.1063/1.1652429
Marrone, 1998, Solvation effects on kinetics of methylene chloride reactions in sub- and supercritical water: theory, experiment, and ab initio calculations, J. Phys. Chem. A, 102, 7013, 10.1021/jp981257a
Bennett, 1995, Continuum electrostatics model for an SN2 reaction in supercritical water, J. Phys. Chem., 99, 16136, 10.1021/j100043a065
Balbuena Perla, 1994, Molecular simulation of a chemical reaction in supercritical water, J. Am. Chem. Soc., 116, 2689, 10.1021/ja00085a087
Pomelli, 1997, Ab initio study of the SN2 reaction CH3Cl+Cl−→Cl−+CH3Cl in supercritical water with the polarizable continuum model, J. Phys. Chem. A, 101, 3561, 10.1021/jp962358g
Balbuena, 1995, Computer simulation study of an SN2 reaction in supercritical water, J. Phys. Chem., 99, 1554, 10.1021/j100005a029
Flanagin, 1995, Temperature and density effects on an SN2 reaction in supercritical water, J. Phys. Chem., 99, 5196, 10.1021/j100014a047
Luo, 1997, Compressible continuum model study of the chloride plus methyl chloride reaction in supercritical water, J. Phys. Chem. B Mater., 101, 1063, 10.1021/jp9628601
Luo, 1995, Compressible continuum solvation model for molecular solutes, J. Am. Chem. Soc., 117, 11359, 10.1021/ja00150a042
Yamasaki, 1999, Methanol formation from dichloromethane under hydrothermal conditions, Chem. Lett., 83, 10.1246/cl.1999.83
Hori, 2003, Hybrid QM/MM molecular dynamics simulations for an ionic SN2 reaction in the supercritical water: OH−+CH3Cl→CH3OH+Cl−, J. Comp. Chem., 24, 209, 10.1002/jcc.10134
Dinjus, 2002, Applications of supercritical water, 422
Bröll, 1999, Chemistry in supercritical water, Angew. Chem. Int. Ed., 38, 2998, 10.1002/(SICI)1521-3773(19991018)38:20<2998::AID-ANIE2998>3.0.CO;2-L
Savage, 1999, Organic chemical reactions in supercritical water, Chem. Rev., 99, 603, 10.1021/cr9700989
An, 1997, Applications of high-temperature aqueous media for synthetic organic reactions, J. Org. Chem., 62, 2505, 10.1021/jo962115k
Brill, 2000, Geothermal vents and chemical processing: the infrared spectroscopy of hydrothermal reactions, J. Phys. Chem. A, 104, 4343, 10.1021/jp993757p
Siskin, 2001, Reactivity of organic compounds in superheated water: general background, Chem. Rev., 101, 825, 10.1021/cr000088z
Townsend, 1988, Solvent effects during reactions in supercritical water, Ind. Eng. Chem. Res., 27, 143, 10.1021/ie00073a026
Torry, 1992, The effect of salts on hydrolysis in supercritical and near-critical water: reactivity and availability, J. Supercrit. Fluids, 5, 163, 10.1016/0896-8446(92)90003-3
Tsao, 1992, Reactions of supercritical water with benzaldehyde, benzylidenebenzylamine, benzyl alcohol, and benzoic acid*1, J. Supercrit. Fluids, 5, 107, 10.1016/0896-8446(92)90027-H
Houser, 1986, Reactivity of some organic compounds with supercritical water, Fuel, 65, 827, 10.1016/0016-2361(86)90077-3
Houser, 1989, The reactivity of tetrahydroquinoline, benzylamine and bibenzyl with supercritical water, Fuel, 68, 323, 10.1016/0016-2361(89)90096-3
Abraham, 1985, Pyrolysis of benzylphenylamine neat and with tetralin, methanol und water solvents, Ind. Eng. Chem. Pro. Res. Dev., 24, 300, 10.1021/i300018a025
Kieke, 1996, Spectroscopy of hydrothermal reactions. 1. The CO2–H2O system and kinetics of urea decomposition in an FTIR spectroscopy flow reactor cell operable to 725K and 335bar, J. Phys. Chem. A, 100, 7455, 10.1021/jp950964q
Schoppelrei, 1996, Spectroscopy of hydrothermal reactions. 4. Kinetics of urea and guanidinium nitrate at 200–300°C in a diamond cell, infrared spectroscopy flow reactor, J. Phys. Chem. A, 100, 14343, 10.1021/jp960396u
Krämer, 1999, Hydrolysis of nitriles in supercritical water, Chem. Eng. Technol., 22, 494, 10.1002/(SICI)1521-4125(199906)22:6<494::AID-CEAT494>3.0.CO;2-U
Izzo, 1997, Nitril reaction in high-temperature water: kinetics and mechanism, AIChE J., 43, 2048, 10.1002/aic.690430813
Izzo, 1999, Hydrothermal reaction of saturated and unsaturated nitriles: reactivity and reaction pathway analysis, Ind. Eng. Chem. Res., 38, 1183, 10.1021/ie9803218
Lee, 1992, Hydrolysis and oxidation of acetamide in supercritical water, Environ. Sci. Technol., 26, 1587, 10.1021/es00032a015
Faisal, 2005, Hydrolysis and cyclodehydration of dipeptide under hydrothermal conditions, Ind. Eng. Chem. Res., 44, 5472, 10.1021/ie0500568
Iyer, 1997, Effect of pressure on the rate of butyronitrile hydrolysis in high-temperature water, J. Supercrit. Fluids, 10, 191, 10.1016/S0896-8446(97)00004-1
Harrell, 1997, Adv. Environ. Res., 1, 373
Venardou, 2004, On-line monitoring of the hydrolysis of acetonitrile in near-critical water using Raman spectroscopy, Vibr. Spectrosc., 35, 103, 10.1016/j.vibspec.2003.12.003
Iyer, 1996, Hydrothermal reactions of 1-nitrobutane in high-temperature water, J. Supercrit. Fluids, 9, 26, 10.1016/S0896-8446(96)90041-8
Lu, 2002, Solvatochromic characterization of near-critical water as a benign reaction medium, Ind. Eng. Chem. Res., 41, 2835, 10.1021/ie020160e
Anikeev, 2005, Effect of supercritical water density on the rate constant of aliphatic nitrocompounds decomposition, J. Supercrit. Fluids, 33, 243, 10.1016/j.supflu.2004.08.001
Anikeev, 2004, Decomposition and oxidation of aliphatic nitro compounds in supercritical water, Ind. Eng. Chem. Res., 43, 8141, 10.1021/ie0496986
Khuwijitjaru, 2004, Kinetics on the hydrolysis of fatty acid esters in subcritical water, Chem. Eng. J., 99, 1, 10.1016/j.cej.2003.08.002
Li, 2001, Spectroscopy of hydrothermal reactions. 16. Kinetics of decarboxylation/hydrolysis of methyl propiolate ester and decarboxylation of propiolic acid at 150–210°C and 275bar, J. Phys. Chem. A, 105, 6171, 10.1021/jp010694d
P. Moeller, A method for splitting of fats and other esters by hydrolysis. Patent Appl. WO97/07187 (1997).
Oka, 2002, Evidence for a hydroxide ion catalyzed pathway in ester hydrolysis in supercritical water, Angew. Chem. Int. Ed., 41, 623, 10.1002/1521-3773(20020215)41:4<623::AID-ANIE623>3.0.CO;2-1
Penninger, 1988, Reactions of di-n-butylphthalate in water at near-critical temperature and pressure, Fuel, 67, 490, 10.1016/0016-2361(88)90344-4
Lesutis, 1999, Acid/base catalysed esters hydrolysis in near-critical water, Chem. Commun., 2063, 10.1039/a906401j
Y. Tanabe, J. Toriya, I. Kaahhra, O. Kurashiki, Process for producing butandieol or butendiol, Patent Appl. GB 410276 (1977).
Klein, 1990, Hyrolysis in supercritical water: solvent effects as a probe of the reaction mechanism, J. Supercrit. Fluids, 3, 222, 10.1016/0896-8446(90)90026-I
Alemán, 1999, Hydrolysis and saponification of methyl benzoates, Green Chem., 1, 65, 10.1039/a809670h
Patrick, 2001, Near-critical water: a benign medium for catalytic reactions, Ind. Eng. Chem. Res., 40, 6063, 10.1021/ie010178+
Townsend, 1985, Dibenzyl ether as a probe into the supercritical fluid solvent extraction of volatiles from coal with water, Fuel, 64, 635, 10.1016/0016-2361(85)90047-X
Penninger, 1989, Chemistry of methoxynaphthalene in supercritical water, 242
Penninger, 2000, Hydrolysis of diphenylether in supercritical water: effects of dissolved NaCl, J. Supercrit. Fluids, 17, 215, 10.1016/S0896-8446(00)00046-2
Penninger, 1999, Reactions of diphenylether in supercritical water—mechanism and kinetics, J. Supercrit. Fluids, 16, 119, 10.1016/S0896-8446(99)00024-8
Klein, 1992, Decoupling substituent and solvent effects during hydrolysis of substituted anisoles in supercritical water, Ind. Eng. Chem. Res., 31, 182, 10.1021/ie00001a026
Sasaki, 1998, Cellulose hydrolysis in subcritical and supercritical water, J. Supercrit. Fluids, 13, 261, 10.1016/S0896-8446(98)00060-6
Sasaki, 2000, Dissolution and hydrolysis of cellulose in subcritical and supercritical water, Ind. Eng. Chem. Res., 39, 2883, 10.1021/ie990690j
Siskin, 1993, Aqueous organic chemistry. 5. Diaryl ethers: diphenyl ether 1-phenoxynaphthalene and 9-phenoxyphenanthrene, Fuel, 72, 1435, 10.1016/0016-2361(93)90420-7
Sato, 2003, Hydrolysis of acetals in water under hydrothermal conditions, Tetrahedron Lett., 44, 8623, 10.1016/j.tetlet.2003.09.087
Siskin, 1991, Aqueous organic chemistry. 4. Cleavage of diaryl ethers, Energy Fuels, 5, 770, 10.1021/ef00029a028
Huppert, 1989, Hydrolysis in supercritical water: identification and implications of a polar transition state, Ind. Eng. Chem. Res., 28, 161, 10.1021/ie00086a006
Lawson, 1985, Influence of water on guaiacol pyrolysis, Ind. Eng. Chem. Fundam., 24, 203, 10.1021/i100018a012
Taylor, 2002, Multiscale reaction pathway analysis of methyl tert-butyl ether hydrolysis under hydrothermal conditions, Ind. Eng. Chem. Res., 41, 1, 10.1021/ie010495g
Nagai, 2005, Mechanisms and kinetics of noncatalytic ether reaction in supercritical water. 1. Proton-transferred fragmentation of diethyl ether to acetaldehyde in competition with hydrolysis, J. Phys. Chem. A, 109, 3550, 10.1021/jp050531f
Nagai, 2005, Mechanisms and kinetics of noncatalytic ether reaction in supercritical water. 2. Proton-transferred fragmentation of dimethyl ether to formaldehyde in competition with hydrolysis, J. Phys. Chem. A, 109, 3558, 10.1021/jp0505328
Gonzalez, 2005, Kinetics of dibenzylether hydrothermolysis in supercritical water, AIChE J., 51, 971, 10.1002/aic.10362
Marrone, 1998, Product distribution and reaction pathways for methylene chloride hydrolysis and oxidation under hydrothermal conditions, J. Supercrit. Fluids, 12, 239, 10.1016/S0896-8446(98)00083-7
Salvatierra, 1999, Kinetic study of hydrolysis of methylene chloride from 100 to 500°C, Ind. Eng. Chem. Res., 38, 4169, 10.1021/ie9903700
Jahnke, 2001, Hydrolysis of bromobenzene in supercritical water, Chem. Ing. Tech., 73, 237
Uchida, 2003, Decomposition of 2-bromophenol in NaOH solution at high temperature, J. Hazard. Mater., 101, 231, 10.1016/S0304-3894(03)00206-1
Bell, 1998, Monitoring anhydride and acid conversion in supercritical/hydrothermal water by in situ fiber-optic Raman spectroscopy, Anal. Chem., 70, 332, 10.1021/ac9707141
Itami, 2004, The carbon–silicon bond cleavage of organosilicon compounds in supercritical water, Bull. Chem. Soc. Jpn., 77, 2071, 10.1246/bcsj.77.2071
Chamblee, 2004, Reversible in situ acid formation for β-pinene hydrolysis using CO2 expanded liquid and hot water, Green Chem., 6, 382, 10.1039/B400393D
Klein, 1997, Hydrolysis of nitriles at sub- and supercritical conditions: mechanistic elucidation, 535
Krammer, 2000, Hydrolysis of esters in subcritical and supercritical water, J. Supercrit. Fluids, 16, 189, 10.1016/S0896-8446(99)00032-7
Miksa, 2002, Spectroscopy of hydrothermal reactions. 22. The effects of cations on the decarboxylation kinetics of trifluoroacetate, cyanoacetate, propiolate, and malonate ions, J. Phys. Chem. A, 106, 11107, 10.1021/jp020941t
Carlsson, 1994, Study of the sequential conversion of citric to itaconic to methacrylic-acid in near-critical and supercritical water, Ind. Eng. Chem. Res., 33, 1989, 10.1021/ie00032a014
Matsubara, 2004, Palladium-catalyzed decarboxylation and decarbonylation under hydrothermal conditions: decarboxylative deuteration, Org. Lett., 6, 2071, 10.1021/ol0492602
Sasaki, 2002, Kinetics and mechanism of cellobiose hydrolysis and retro-aldol condensation in subcritical and supercritical water, Ind. Eng. Chem. Res., 41, 6642, 10.1021/ie020326b
Xu, 1997, Mechanism and temperature-dependent kinetics of the dehydration of tert-butyl alcohol in hot compressed liquid water, Ind. Eng. Chem. Res., 36, 23, 10.1021/ie960349o
Xu, 1991, Mechanism and kinetics of the acid-catalyzed formation of ethene and diethyl ether from ethanol in supercritical water, Ind. Eng. Chem. Res., 30, 1478, 10.1021/ie00055a012
Ramayya, 1987, Acid-catalysed dehydration of alcohols in supercritical water, Fuel, 66, 1364, 10.1016/0016-2361(87)90183-9
Antal, 1998, Mechanism and kinetics of the acid-catalyzed dehydration of 1- and 2-propanol in hot compressed liquid water, Ind. Eng. Chem. Res., 37, 3820, 10.1021/ie980204c
Narayan, 1990, Influence of pressure on the acid-catalyzed rate constant for 1-propanol dehydration in supercritical water, J. Am. Chem. Soc., 112, 1927, 10.1021/ja00161a043
Anikeev, 2004, Kinetics and thermodynamics of 2-propanol dehydration in supercritical water, J. Supercrit. Fluids, 32, 123, 10.1016/j.supflu.2004.01.002
Antal, 1985, Pyrolytic sources of hydrocarbons from biomass, J. Anal. Appl. Pyrolysis, 8, 291, 10.1016/0165-2370(85)80032-2
Antal, 1990, Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from -fructose and sucrose, Carbohydr. Res., 199, 91, 10.1016/0008-6215(90)84096-D
Mok, 1989, Formation of acrylic acid from lactic acid in supercritical water, J. Org. Chem., 54, 4596, 10.1021/jo00280a027
Dai, 2004, Catalytic dehydration of propylene glycol with salts in near-critical water, Appl. Catal. A: Gen., 258, 189, 10.1016/j.apcata.2003.09.001
Crittendon, 1994, Transformations of cyclohexane derivatives in supercritical water, Organometallics, 13, 2587, 10.1021/om00019a015
Kuhlmann, 1994, Classical organic reactions in pure superheated water, J. Org. Chem., 59, 3098, 10.1021/jo00090a030
Akiya, 2001, Kinetics and mechanism of cyclohexanol dehydration in high-temperature water, Ind. Eng. Chem. Res., 40, 1822, 10.1021/ie000964z
Dai, 2003, Decomposition of a polyol in supercritical water, Polym. Degrad. Stabil., 80, 353, 10.1016/S0141-3910(03)00020-X
Kabyemela, 1997, Degradation kinetics of dihydroxyacetone and glyceraldehyde in subcritical and supercritical water, Ind. Eng. Chem. Res., 36, 2025, 10.1021/ie960747r
Krammer, 2005, Investigating the synthesis potential in supercritical water, Chem. Eng. Technol., 22, 126, 10.1002/(SICI)1521-4125(199902)22:2<126::AID-CEAT126>3.0.CO;2-4
Richter, 2001, The dehydration of 1,4-butanediol to tetrahydrofuran in supercritical water, Chem. Eng. Technol., 24, 340, 10.1002/1521-4125(200104)24:4<340::AID-CEAT340>3.0.CO;2-O
Katritzky, 1990, Aqueous high-temperature chemistry of carbo- and heterocycles. 2. Monosubstituted benzenes: benzyl alcohol, benzaldehyde and benzoic acid, Energy Fuels, 4, 499, 10.1021/ef00023a016
Tomita, 2002, Catalytic hydration of propylene with MoO3/Al2O3 in supercritical water, Ind. Eng. Chem. Res., 41, 3341, 10.1021/ie020012o
Sasaki, 2003, Conversion of the hydroxyl group in 1-hexyl alcohol to an amide group in supercritical water without catalyst, Green Chem., 5, 95, 10.1039/b211451h
Dudd, 2003, Synthesis of benzimidazoles in high-temperature water, Green Chem., 5, 187, 10.1039/b212394k
Chandler, 1998, Tuning alkylation reactions with temperature in near-critical water, AIChE J., 44, 2080, 10.1002/aic.690440915
Katritzky, 1996, Aquathermolysis: reactions of organic compounds with superheated water, Acc. Chem. Res., 29, 399, 10.1021/ar950144w
Sato, 2002, Ortho-selective alkylation of phenol with 2-propanol without catalyst in supercritical water, Ind. Eng. Chem. Res., 41, 3064, 10.1021/ie0200712
Sato, 2002, Dealkylation and rearrangement kinetics of 2-isopropylphenol in supercritical water, Ind. Eng. Chem. Res., 41, 3124, 10.1021/ie010763a
Sato, 2004, Control of reversible reactions in supercritical water. I. Alkylations, AIChE J., 50, 665, 10.1002/aic.10060
Sato, 2004, Non-catalytic recovery of phenol through decomposition of 2-isopropylphenol in supercritical water, Chem. Eng. Sci., 59, 1247, 10.1016/j.ces.2003.12.018
Brown, 2000, Acylation of activated aromatics without added acid catalyst, Chem. Commun., 1295, 10.1039/b001544j
Sato, 2003, Alkylation of phenol with carbonyl compounds in supercritical water, J. Chem. Eng. Jpn., 36, 339, 10.1252/jcej.36.339
Junk, 1997, Synthesis of polydeuterated benzothiazoles via supercritical deuteration of anilines, J. Label. Comp. Radiopharm., 19, 625, 10.1002/(SICI)1099-1344(199708)39:8<625::AID-JLCR15>3.0.CO;2-X
Gläser, 1999, Base-catalyzed reactions in near-critical water for environmentally benign chemical processing, Abstr. Papers Am. Chem. Soc., 217, U820
Nolen, 2003, The catalytic opportunities of near-critical water: a benign medium for conventionally acid and base catalyzed condensations for organic synthesis, Green Chem., 5, 663, 10.1039/B308499J
Comisar, 2004, Kinetics of crossed aldol condensations in high-temperature water, Green Chem., 6, 227, 10.1039/b314622g
Sasaki, 2005, Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water, Green Chem., 4, 285, 10.1039/b203968k
Nagai, 2004, Noncatalytic disproportionation and decarbonylation reactions of benzaldehyde in supercritical water, Chem. Lett., 33, 622, 10.1246/cl.2004.622
Morooka, 2005, Hydrothermal carbon–carbon bond formation and disproportionations of C1 aldehydes: formaldehyde and formic acid, J. Phys. Chem. A, 109, 6610, 10.1021/jp052153k
Morooka, 2003, Noncatalytic Cannizzaro-type reaction of acetaldehyde in supercritical water, Chem. Lett., 32, 310, 10.1246/cl.2003.310
Nagai, 2004, Mechanisms and kinetics of acetaldehyde reaction in supercritical water: noncatalytic disproportionation, condensation, and decarbonylation, J. Phys. Chem. A, 108, 11635, 10.1021/jp046117h
Ghandi, 2003, Enolization of acetone in superheated water detected via radical formation, J. Am. Chem. Soc., 125, 9594, 10.1021/ja036377x
Kuhlmann, 1994, H–D exchange in pinacolone by deuterium-oxide at high-temperature and pressure, J. Org. Chem., 59, 5377, 10.1021/jo00097a046
Klärner, 2005, Effect of pressure on organic reactions, 103
Jurczak, 2005, Organic synthesis at high pressure, 163
Dinjus, 2005, Organic chemistry in supercritical fluids, 219
Breslow, 1980, Hydrophobic acceleration of Diels–Alder reactions, J. Am. Chem. Soc., 102, 7816, 10.1021/ja00546a048
Breslow, 1983, Selective Diels–Alder reactions in aqueous solutions and suspensions, Tetrahedron Lett., 24, 1901, 10.1016/S0040-4039(00)81801-8
Korzenski, 1997, Diels–Alder reactions using supercritical water as an aqueous solvent medium, Tetrahedron Lett., 38, 5611, 10.1016/S0040-4039(97)01274-4
Harano, 2000, A theoretical study on a Diels–Alder reaction in ambient and supercritical water: viewing solvent effects through frontier orbitals, Chem. Phys., 258, 151, 10.1016/S0301-0104(00)00158-0
Yamaguchi, 2003, Ab initio study of noncatalytic Beckmann rearrangement and hydrolysis of cyclohexanone-oxime in subcritical and supercritical water using the polarizable continuum model, J. Mol. Struct.: THEOCHEM, 639, 137, 10.1016/j.theochem.2003.08.064
Sato, 2004, Analysis of the density effect on partial oxidation of methane in supercritical water, J. Supercrit. Fluids, 28, 69, 10.1016/S0896-8446(03)00008-1
Hirth, 1993, Oxidation and hydrothermolysis of hydrocarbons in supercritical water at high pressures, Berichte der Bunsengesellschaft/Phys. Chem. Chem. Phys., 97, 1091, 10.1002/bbpc.19930970905
Lee, 1996, Direct partial oxidation of methane to methanol in supercritical water, J. Supercrit. Fluids, 9, 99, 10.1016/S0896-8446(96)90004-2
Savage, 1994, Methane to methanol in supercritical water, J. Supercrit. Fluids, 7, 135, 10.1016/0896-8446(94)90050-7
Dixon, 1992, Conversion of methane to methanol by catalytic supercritical water oxidation, J. Supercrit. Fluids, 5, 269, 10.1016/0896-8446(92)90018-F
Aki, 1994, Catalytic partial oxidation of methane in supercritical water, J. Supercrit. Fluids, 7, 259, 10.1016/0896-8446(94)90013-2
Bröll, 2003, Heterogeneously catalyzed partial oxidation of methane in supercritical water, Chem. Eng. Technol., 26, 733, 10.1002/ceat.200303009
Kaul, 1999, Corrosion behaviour of inorganic materials in subcritical and supercritical aqueous solutions, Materialwissenschaft und Werkstofftechnik, 30, 326, 10.1002/(SICI)1521-4052(199906)30:6<326::AID-MAWE326>3.0.CO;2-8
Richter, 2003, The partial oxidation of isobutene in sub- and supercritical water, Chem. Eng. Technol., 26, 688, 10.1002/ceat.200390105
Bröll, 2003, Partial oxidation of propylene in sub- and supercritical water, Chem. Eng. Technol., 26, 424, 10.1002/ceat.200390064
Richter, 2002, The partial oxidation of cyclohexane in supercritical water, Chem. Eng. Technol., 25, 265, 10.1002/1521-4125(200203)25:3<265::AID-CEAT265>3.0.CO;2-0
Bröll, 2002, Partial oxidation of propene in subcritical and supercritical water, Chem. Ing. Tech., 74, 81, 10.1002/1522-2640(200202)74:1/2<81::AID-CITE81>3.0.CO;2-3
Richter, 2001, Partial oxidation of cyclohexane in supercritical water, Chem. Ing. Tech., 73, 1165, 10.1002/1522-2640(200109)73:9<1165::AID-CITE1165>3.3.CO;2-E
Bröll, 2001, Heterogeneously catalyzed partial oxidation in supercritical water, Chem. Eng. Technol., 24, 142, 10.1002/1521-4125(200102)24:2<142::AID-CEAT142>3.0.CO;2-W
Richter, 2003, The partial oxidation of isobutene in sub- and supercritical water, Chem. Eng. Technol., 26, 688, 10.1002/ceat.200390105
Holliday, 1998, Organic synthesis in subcritical water: oxidation of alkyl aromatics, J. Supercrit. Fluids, 12, 255, 10.1016/S0896-8446(98)00084-9
Hamley, 2002, Selective partial oxidation in supercritical water: the continuous generation of terephthalic acid from para-xylene in high yield, Green Chem., 4, 235, 10.1039/b202087b
Dunn, 2005, High-temperature liquid water: a viable medium for terephthalic acid synthesis, Environ. Sci. Technol., 39, 5427, 10.1021/es048575+
Garcia-Verdugo, 2005, Simultaneous continuous partial oxidation of mixed xylenes in supercritical water, Green Chem., 7, 294, 10.1039/b419098j
Dunn, 2002, Terephthalic acid synthesis in high-temperature liquid water, Industr. Eng. Chem. Res., 41, 4460, 10.1021/ie0107789
Dunn, 2002, Terephthlic acid synthesis in supercritical water, Adv. Synth. Catal., 344, 385, 10.1002/1615-4169(200206)344:3/4<385::AID-ADSC385>3.0.CO;2-G
Kim, 2002, Uncatalyzed partial oxidation of p-xylene in sub- and supercritical water, React. Kinet. Catal. Lett., 77, 35, 10.1023/A:1020331517408
Boix, 1999, Preparation of quinolines by reduction of ortho-nitroarenes with zinc in near-critical water, New J. Chem., 23, 641, 10.1039/a902554e
Lei, 2003, Reduction of azides to amines with zinc metal in near-critical water, Chem. J. Internet, 5
Bryson, 2000, A green and selective reduction of aldehydes, Tetrahedron Lett., 41, 3523, 10.1016/S0040-4039(00)00435-4
Adschiri, 1998, Catalytic hydrodesulfurization of dibenzothiophene through partial oxidation and a water-gas shift reaction in supercritical water, Ind. Eng. Chem. Res., 37, 2634, 10.1021/ie970751i
Arai, 2000, Hydrogenation of hydrocarbons through partial oxidation in supercritical water, Ind. Eng. Chem. Res., 39, 4697, 10.1021/ie000326g
Adschiri, 1999, Hydrogenation through partial oxidation of hydrocarbons in supercritical water, Int. J. Soc. Mater. Eng. Resour., 7, 273, 10.5188/ijsmer.7.273
Parsons, 1996, Organic reactions in very hot water, Chemtech, 30
Reardon, 1995, Palladium-catalyzed coupling reactions in superheated water, Organometallics, 14, 3810, 10.1021/om00008a031
Diminnie, 1995, In-situ generation and Heck coupling of alkenes in superheated water, Organometallics, 14, 4023, 10.1021/om00008a059
Borwieck, 1998, Organometallic chemistry in supercritical water: metallorganic products of the CpCo-catalyzed cyclotrimerization of acetylenes, J. Organomet. Chem., 570, 121, 10.1016/S0022-328X(98)00844-4
Bönnemann, 1984, A correlation between 13C and 59Co NMR data and the catalytic activity of organocobalt complexes in the synthesis of pyridine derivatives, J. Organomet. Chem., 272, 231, 10.1016/0022-328X(84)80468-4
Bönnemann, 1985, Organocobalt compounds in the synthesis of pyridines—an example of structure-efficiency relationships in homogeneous catalýsis, Angew. Chem. Int. Ed., 24, 248, 10.1002/anie.198502481
Rausch, 1970, Organometallic π-complexes. XXII. Chemistry of pi-cyclopentadienyltetraphenylcyclobutadienecobalt and related compounds, J. Org. Chem., 35, 3888, 10.1021/jo00836a067
Li, 2004, Glaser coupling reaction without organic solvents and bases under near-critical water conditions, Chin. J. Chem., 22, 219, 10.1002/cjoc.20040220224
Bryson, 2004, Green heterocycle synthesis, isochromenones and artemidin, Green Chem., 5, 174, 10.1039/b211966h
E. Dinjus, W. Riffel, H. Borwieck, Verfahren zur Hydroformylierung eines Alkens. Patent Appl. DE-OS 19 853 371 (2000).
Bicker, 2005, Catalytical conversion of carbohydrates in subcritical water: a new chemical process for lactic acid production, J. Mol. Catal. A: Chem., 239, 151, 10.1016/j.molcata.2005.06.017