Host-defense peptides from skin secretions of the octoploid frogs Xenopus vestitus and Xenopus wittei (Pipidae): Insights into evolutionary relationships
Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics - Tập 11 - Trang 20-28 - 2014
Tài liệu tham khảo
Anastasi, 1970, Presence of caerulein in extracts of the skin of Leptodactylus pentadactylus labyrinthicus and of Xenopus laevis, Br. J. Pharmacol., 38, 1, 10.1111/j.1476-5381.1970.tb10351.x
Anderson, 2009, Regulatory evolution of a duplicated heterodimer across species and tissues of allopolyploid clawed frogs (Xenopus), J. Mol. Evol., 6, 236, 10.1007/s00239-009-9197-6
Araki, 1973, Isolation and structure of a new active peptide “Xenopsin” on the smooth muscle, especially on a strip of fundus from a rat stomach, from the skin of Xenopus laevis, Chem. Pharm. Bull., 21, 2801, 10.1248/cpb.21.2801
Burki, 1985, Evolution of globin expression in the genus Xenopus (Anura: Pipidae), Mol. Biol. Evol., 2, 270
Chen, 2005, Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index, J. Biol. Chem., 280, 12316, 10.1074/jbc.M413406200
Clinical Laboratory and Standards Institute, 2008
Conlon, 2014, Host-defense peptides with therapeutic potential from skin secretions of frogs from the family pipidae, Pharmaceuticals (Basel), 7, 58, 10.3390/ph7010058
Conlon, 2010, Orthologs of magainin, PGLa, procaerulein-derived, and proxenopsin-derived peptides from skin secretions of the octoploid frog Xenopus amieti (Pipidae), Peptides, 31, 989, 10.1016/j.peptides.2010.03.002
Conlon, 2011, Purification and properties of antimicrobial peptides from skin secretions of the Eritrea clawed frog Xenopus clivii (Pipidae), Comp. Biochem. Physiol. Toxicol. Pharmacol., 153, 350, 10.1016/j.cbpc.2010.12.007
Conlon, 2012, Host-defense peptides in skin secretions of African clawed frogs (Xenopodinae, Pipidae), Gen. Comp. Endocrinol., 176, 513, 10.1016/j.ygcen.2011.10.010
Dathe, 1999, Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells, Biochim. Biophys. Acta, 1462, 71, 10.1016/S0005-2736(99)00201-1
de Queiroz, 1998, The general lineage concept of species, species criteria, and the process of speciation, 57
Evans, 2007, Ancestry influences the fate of duplicated genes millions of years after polyploidization of clawed frogs (Xenopus), Genetics, 176, 1119, 10.1534/genetics.106.069690
Evans, 2008, Genome evolution and speciation genetics of clawed frogs (Xenopus and Silurana), Front. Biosci., 13, 4687, 10.2741/3033
Evans, 2004, A mitochondrial DNA phylogeny of African clawed frogs: phylogeography and implications for polyploid evolution, Mol. Phylogenet. Evol., 33, 197, 10.1016/j.ympev.2004.04.018
Evans, 2005, Evolution of RAG-1 in polyploid clawed frogs, Mol. Biol. Evol., 22, 1193, 10.1093/molbev/msi104
Evans, 2011, Description of a new octoploid frog species (Anura: Pipidae: Xenopus) from the Democratic Republic of the Congo, with a discussion of the biogeography of African clawed frogs in the Albertine Rift, J. Zool., 283, 276, 10.1111/j.1469-7998.2010.00769.x
Frost, 2014
Gibson, 1986, Novel peptide fragments originating from PGLa and the caerulein and xenopsin precursors from Xenopus laevis, J. Biol. Chem., 261, 5341, 10.1016/S0021-9258(19)57220-9
Giovannini, 1987, Biosynthesis and degradation of peptides derived from Xenopus laevis prohormones, Biochem. J., 243, 113, 10.1042/bj2430113
Goldberg, 2007, Chytrid fungus in frogs from an equatorial African Montane Forest in Western Uganda, J. Wildl. Dis., 43, 521, 10.7589/0090-3558-43.3.521
Irisarri, 2011, Reversal to air-driven sound production revealed by a molecular phylogeny of tongueless frogs, family Pipidae, BMC Evol. Biol., 11, 114, 10.1186/1471-2148-11-114
King, 2012, Host-defense peptides from skin secretions of the tetraploid frogs Xenopus petersii and Xenopus pygmaeus, and the octoploid frog Xenopus lenduensis (Pipidae), Peptides, 33, 35, 10.1016/j.peptides.2011.11.015
King, 2013, Peptidomic analysis of skin secretions provides insight into the taxonomic status of the African clawed frogs Xenopus victorianus and Xenopus laevis sudanensis (Pipidae), Comp. Biochem. Physiol. D Genomics Proteomics, 8, 250, 10.1016/j.cbd.2013.07.001
Kobel, 1996, Allopolyploid speciation, 391
Kobel, 1996, The extant species, 9
Kyte, 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol., 157, 105, 10.1016/0022-2836(82)90515-0
Lynch, 2004, The altered evolutionary trajectories of gene duplicates, Trends Genet., 20, 544, 10.1016/j.tig.2004.09.001
Mechkarska, 2010, Antimicrobial peptides with therapeutic potential from skin secretions of the Marsabit clawed frog Xenopus borealis (Pipidae), Comp. Biochem. Physiol. Toxicol. Pharmacol., 152, 467, 10.1016/j.cbpc.2010.07.007
Mechkarska, 2011, Peptidomic analysis of skin secretions demonstrates that the allopatric populations of Xenopus muelleri (Pipidae) are not conspecific, Peptides, 32, 1502, 10.1016/j.peptides.2011.05.025
Mechkarska, 2011, Genome duplications within the Xenopodinae do not increase the multiplicity of antimicrobial peptides in Silurana paratropicalis and Xenopus andrei skin secretions, Comp. Biochem. Physiol. D Genomics Proteomics, 6, 206, 10.1016/j.cbd.2011.03.003
Mechkarska, 2012, Hybridization between the African clawed frogs Xenopus laevis and Xenopus muelleri (Pipidae) increases the multiplicity of antimicrobial peptides in skin secretions of female offspring, Comp. Biochem. Physiol. D Genomics Proteomics, 7, 285, 10.1016/j.cbd.2012.05.002
Mechkarska, 2013, A comparison of host-defense peptides in skin secretions of female Xenopus laevis×Xenopus borealis and X. borealis×X. laevis F1 hybrids, Peptides, 45, 1, 10.1016/j.peptides.2013.04.008
Muñoz, 1994, Elucidating the folding problem of helical peptides using empirical parameters, Nat. Struct. Biol., 1, 399, 10.1038/nsb0694-399
Roelants, 2005, Archaeobatrachian paraphyly and pangaean diversification of crown-group frogs, Syst. Biol., 54, 111, 10.1080/10635150590905894
Roelants, 2007, Global patterns of diversification in the history of modern amphibians, Proc. Natl. Acad. Sci. U. S. A., 104, 887, 10.1073/pnas.0608378104
Sato, 1993, Evolution of the MHC: isolation of class II beta-chain cDNA clones from the amphibian Xenopus laevis, J. Immunol., 150, 2831, 10.4049/jimmunol.150.7.2831
Seo, 2012, Antimicrobial peptides for therapeutic applications: a review, Molecules, 17, 10.3390/molecules171012276
Soravia, 1988, Antimicrobial properties of peptides from Xenopus granular gland secretions, FEBS Lett., 228, 337, 10.1016/0014-5793(88)80027-9
Tinsley, 1979, The biology and systematics of a new species of Xenopus (Anura: Pipidae) from the highlands of central Africa, J. Zool. (Lond.), 188, 69, 10.1111/j.1469-7998.1979.tb03393.x
Tinsley
Tinsley
Yeung, 2011, Multifunctional cationic host defence peptides and their clinical applications, Cell. Mol. Life Sci., 68, 2161, 10.1007/s00018-011-0710-x
Yount, 2012, Emerging themes and therapeutic prospects for anti-infective peptides, Annu. Rev. Pharmacol. Toxicol., 52, 337, 10.1146/annurev-pharmtox-010611-134535
Zahid, 2011, Caerulein-and xenopsin-related peptides with insulin-releasing activities from skin secretions of the clawed frogs, Xenopus borealis and Xenopus amieti (Pipidae), Gen. Comp. Endocrinol., 172, 314, 10.1016/j.ygcen.2011.03.022
Zasloff, 1987, Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms and partial cDNA sequence of a precursor, Proc. Natl. Acad. Sci. U. S. A., 84, 5449, 10.1073/pnas.84.15.5449
