Hopf-Like Bifurcations and Asymptotic Stability in a Class of 3D Piecewise Linear Systems with Applications

Journal of Nonlinear Science - Tập 31 - Trang 1-37 - 2021
Rony Cristiano1, Durval J. Tonon1, Mariana Q. Velter1
1Institute of Mathematics and Statistics, Federal University of Goiás, Goiânia, Brazil

Tóm tắt

The main purpose of this paper is to analyze the Hopf-like bifurcations in 3D piecewise linear systems. Such bifurcations are characterized by the birth of a piecewise smooth limit cycle that bifurcates from a singular point located at the discontinuity manifold. In particular, this paper concerns systems of the form $${\dot{x}}=Ax+b^{\pm }$$ which are ubiquitous in control theory. For this class of systems, we show the occurrence of two distinct types of Hopf-like bifurcations, each of which gives rise to a crossing limit cycle (CLC). Conditions on the system parameters for the coexistence of two CLCs and the occurrence of a saddle-node bifurcation of these CLCs are provided. Furthermore, the local asymptotic stability of the pseudo-equilibrium point is analyzed and applications in discontinuous control systems are presented.

Tài liệu tham khảo

Cardoso, J.L., Llibre, J., Novaes, D.D., Tonon, D.J.: Simultaneous occurrence of sliding and crossing limit cycles in piecewise linear planar vector fields. Dyn. Syst. 35(3), 124818 (2020) Castillo, J., Llibre, J., Verduzco, F.: The pseudo-Hopf bifurcation for planar discontinuous piecewise linear differential systems. Nonlinear Dyn. 90, 1829–1840 (2017) Cristiano, R., Pagano, D.J.: Two-parameter boundary equilibrium bifurcations in 3D-Filippov systems. J. Nonlinear Sci. 29(6), 2845–2875 (2019) Cristiano, R., Pagano, D.J., Freire, E., Ponce, E.: Revisiting the Teixeira singularity bifurcation analysis. Application to the control of power converters. Int. J. Bifurc. Chaos 28(9), 1850106 (2018) Cristiano, R., Pagano, D.J., Carvalho, T., Tonon, D.J.: Bifurcations at a degenerate two-fold singularity and crossing limit cycles. J. Differ. Equ. 268(1), 115–140 (2019a) Cristiano, R., Ponce, E., Pagano, D.J., Granzotto, M.: On the Teixeira singularity bifurcation in a dc-dc power electronic converter. Nonlinear Dyn. 96(2), 1243–1266 (2019b) di Bernardo, M., Johansson, K.H., Vasca, F.: Self-oscillations and sliding in relay feedback systems: symmetry and bifurcations. Int. J. Bifurc. Chaos 11(04), 1121–1140 (2001) de Carvalho, T., Cristiano, R., Gonçalves, L.F., Tonon, D.J.: Global analysis of the dynamics of a mathematical model to intermittent HIV treatment. Nonlinear Dyn. 101, 719–739 (2020) de Freitas, B.R., Llibre, J., Medrado, J.C.: Limit cycles of continuous and discontinuous piecewise-linear differential systems in R3. J. Comput. Appl. Math. 338, 311–323 (2018) Dumortier, F., Llibre, J., Artés, J.: Qualitative Theory Of Planar Differential Systems. Universitext. Springer, Berlin (2006) Euzébio, R.D., Llibre, J.: On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line. J. Math. Anal. Appl. 424(1), 475–486 (2015) Filippov, A.F.: Differential equations with discontinuous righthand sides, volume 18 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1988. Translated from the Russian Freire, E., Ponce, E., Torres, F.: Hopf-like bifurcations in planar piecewise linear systems. Publicacions Matemátiques 41, 135–148 (1997) Freire, E., Ponce, E., Torres, F.: Canonical discontinuous planar piecewise linear systems. SIAM J. Appl. Dyn. Syst. 11(1), 181–211 (2012) Freire, E., Ponce, E., Torres, F.: A general mechanism to generate three limit cycles in planar Filippov systems with two zones. Nonlinear Dyn. 78(1), 251–263 (2014) Harris, J., Ermentrout, B.: Bifurcations in the Wilson–Cowan equations with nonsmooth firing rate. SIAM J. Appl. Dyn. Syst. 14(1), 43–72 (2015) Jacquemard, A., Tonon, D.J.: Coupled systems of non-smooth differential equations. Bull. Sci. Math. 136(3), 239–255 (2012) Jacquemard, A., Teixeira, M.A., Tonon, D.J.: Piecewise smooth reversible dynamical systems at a two-fold singularity. Int. J. Bifurc. Chaos Appl. Sci. Eng. 22(8), 1250192 (2012) Jacquemard, A., Teixeira, M.A., Tonon, D.J.: Stability conditions in piecewise smooth dynamical systems at a two-fold singularity. J. Dyn. Control Syst. 19(1), 47–67 (2013) Kuznetsov, Y.A., Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar Filippov systems. Int. J. Bifurc. Chaos 13(8), 2157–2188 (2003) Llibre, J., Novaes, D.D., Teixeira, M.A.: Maximum number of limit cycles for certain piecewise linear dynamical systems. Nonlinear Dyn. 82, 1159–1175 (2015) Olivar, G., Angulo, F., di Bernardo, M.: Hopf-like transitions in nonsmooth dynamical systems. In: 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512), vol. 4, pp. IV–693 (2004) Rodrigues, D.S., Mancera, P.F.A., Carvalho, T., Gonçalves, L.F.: Sliding mode control in a mathematical model to chemoimmunotherapy: The occurrence of typical singularities. Applied Mathematics and Computation, Elsevier, vol. 387, p. 124782 (2020) Simpson, D.J.W.: A compendium of Hopf-like bifurcations in piecewise-smooth dynamical systems. Phys. Lett. A 382(35), 2439–2444 (2018) Simpson, D.: Hopf-like boundary equilibrium bifurcations involving two foci in Filippov systems. J. Differ. Equ. 267(11), 6133–6151 (2019) Utkin, V.: Discussion aspects of high-order sliding mode control. IEEE Trans. Autom. Control 61(3), 829–833 (2016) Zou, F., Nossek, J.A.: Hopf-like bifurcation in cellular neural networks. In: 1993 IEEE International Symposium on Circuits and Systems, vol. 4, pp. 2391–2394 (1993)