Tính nilpotent đồng hình của một số không gian đồng nhất
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bousfield, A.K., Kan, D.M.: Homotopy Limits, Completions and Localizations. Lecture Notes in Math, vol. 304. Springer, Berlin-New York (1972)
Cohen, F.R., Wu, J.: Private communications, March (2017)
Ganea, T.: On the loop spaces of projective spaces. J. Math. Mech. 16, 853–858 (1967)
Golasiński, M., Gonçalves, D., Wong, P.: Exponents of $$[\Omega ({\mathbb{S}}^{r+1}),\Omega (Y)]$$, pp. 103–122. Trends in Mathematics, Birkhäuser, Algebraic Topology and Related Topics (2019)
Hopf, H.: Uber die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerungen. Ann. Math. 42, 22–52 (1941)
Kahn, D.W.: A note on $$H$$-spaces and Postnikov systems of spheres. Proc. Am. Math. Soc. 15(2), 300–307 (1964)
Kaji, S., Kishimoto, D.: Homotopy nilpotency in $$p$$-compact groups (22 Oct, 2007). arXiv:0710.3975v1 [math.AT]
Kaji, S., Kishimoto, D.: Homotopy nilpotency in $$p$$-regular loop spaces. Math. Z. 264, 209–224 (2010)
Kishimoto, D.: Homotopy nilpotency in localized $$SU(n)$$. Homology, Homotopy Appl. 11(1), 61–79 (2009)
Mimura, M., Nishida, G., Toda, H.: Mod $$p$$ decomposition of compact lie groups. Publ. Res. Inst. Math. Sci. 13, 627–680 (1977)
Mimura, M., Toda, H.: Cohomology operations and homotopy of compact Lie groups I. Topology 9, 317–336 (1970)
Mimura, M., Toda, H.: “Topology of Lie Groups I, II”. In: Translations of Math. Monographs, 91. AMS Providence, RI (1991)
Rao, V.K.: $$\text{ Spin }(n)$$ is not homotopy nilpotent for $$n\ge 7$$. Topology 32, 239–249 (1993)
Rao, V.K.: Homotopy nilpotent Lie groups have no torsion in homology. Manuscr. Math. 92, 455–462 (1997)
Snaith, V.P.: Some nilpotent $$H$$-spaces. Osaka J. Math. 13, 145–156 (1976)
Stasheff, J.D.: H-spaces from a homotopy point of view. Lecture Notes in Math, vol. 161. Springer, Berlin-Heidelberg-New York (1970)
Theriault, S.: The dual polyhedral product, cocategory and nilpotence. Adv. Math. 340, 138–192 (2018)
Yagita, N.: Homotopy nilpotency for simply connected Lie groups. Bull. Lond. Math. Soc. 25, 481–486 (1993)
Zabrodsky, A.: Hopf Spaces. North-Holland Publishing Company, Amsterdam (1976)