Homotopy in digital spaces
Tài liệu tham khảo
R. Ayala, E. Domı́nguez, A.R. Francés, A. Quintero, Digital lighting functions, Lecture Notes in Comput. Sci. 1347 (1997) 139–150.
Ayala, 2001, A digital index theorem, Internat. J. Pattern Recognition Artificial Intelligence, 15, 1031, 10.1142/S0218001401001362
Ayala, 2002, Weak lighting functions and strong 26-surfaces, Theoret. Comput. Sci., 283, 29, 10.1016/S0304-3975(01)00051-2
E. Khalimsky, Motion, deformation and homotopy in finite spaces, Proceedings of the 1987 IEEE International Conference on Systems, Man and Cybernetics, Vol. 87CH2503-1, 1987, pp. 227–234.
Kong, 1989, A digital fundamental group, Comput. Graphics, 13, 159, 10.1016/0097-8493(89)90058-7
Kong, 1985, Continuous analogues of axiomatized digital surfaces, Comput. Vision Graphics Image Process, 29, 60, 10.1016/S0734-189X(85)90151-3
Malgouyres, 2001, Computing the fundamental group in digital spaces, Internat. J. Pattern Recognition Artificial Intelligence, 15, 1075, 10.1142/S0218001401001325
Malgouyres, 1999, Complete local characterization of strong 26-surfaces: continuous analog for strong 26-surfaces, Internat. J. Pattern Recognition Artificial Intelligence, 13, 465, 10.1142/S0218001499000288
Maunder, 1980
Morgenthaler, 1981, Surfaces in three-dimensional digital images, Inform. and Control, 51, 227, 10.1016/S0019-9958(81)90290-4
Munkres, 1984
Rotman, 1988, An Introduction to Algebraic Topology, Vol. 119
Rourke, 1972, Introduction to Piecewise-Linear Topology, Vol. 69
Stillwell, 1995
R. Malgouyres, Homotopy in 2-Dimensional Digital Images, Lecture Notes in Comput. Sci. 1347 (1997) 213–222.
R. Malgouyres, Presentation of the Fundamental Group in Digital Surfaces, Lecture Notes in Comput. Sci. 1568 (1999) 136–150.