Homogenization of unbounded integrals with quasiconvex growth
Tóm tắt
Từ khóa
Tài liệu tham khảo
Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86(2), 125–145 (1984)
Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory, Volume 314 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1996)
Anza Hafsa, O.: On the integral representation of relaxed functionals with convex bounded constraints. ESAIM Control Optim. Calc. Var. 16(1), 37–57 (2010)
Anza Hafsa, O., Mandallena, J.-P.: Homogenization of nonconvex integrals with convex growth. J. Math. Pures Appl. 96(2), 167–189 (2011)
Anza Hafsa, O., Mandallena, J.-P.: Homogenization of unbounded singular integrals in $$W^{1,\infty }$$ W 1 , ∞ . Ric. Mat. 61(2), 185–217 (2012)
Anza Hafsa, O., Mandallena, J.-P.: On the relaxation of unbounded multiple integrals. ArXiv e-prints, July (2012)
Anza Hafsa, O., Mandallena, J.-P.: Radial representation of lower semicontinuous envelope. Bollettino dell’Unione Matematica Italiana 7(1), 1–18 (2014)
Akcoglu, M.A., Krengel, U.: Ergodic theorems for superadditive processes. J. Reine Angew. Math. 323, 53–67 (1981)
Bouchitté, G., Bellieud, M.: Regularization of a set function: application to integral representation. Ricerche Mat. 49, 79–93 (2000)
Bouchitté, G., Fonseca, I., Mascarenhas, L.: A global method for relaxation. Arch. Ration. Mech. Anal. 145(1), 51–98 (1998)
Braides, A.: Homogenization of some almost periodic coercive functional. Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 9(1), 313–321 (1985)
Carbone, L., Cioranescu, D., De Arcangelis, R., Gaudiello, A.: Homogenization of unbounded functionals and nonlinear elastomers. The general case. Asymptot. Anal. 29(3–4), 221–272 (2002)
Carbone, L., Cioranescu, D., De Arcangelis, R., Gaudiello, A.: Homogenization of unbounded functionals and nonlinear elastomers. The case of the fixed constraints set. ESAIM Control Optim. Calc. Var. 10(1), 53–83 (2004). (electronic)
Cardone, G., Esposito, A.C., Paderni, G.: Homogenization of Dirichlet and Neumann problems with gradient constraints. Adv. Math. Sci. Appl. 16(2), 447–465 (2006)
Carbone, L., De Arcangelis, R.: Unbounded functionals in the calculus of variations, volume 125 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL, (2002), Representation, relaxation, and homogenization
De Arcangelis, R.: On the relaxation of some classes of pointwise gradient constrained energies. Ann. Inst. H. Poincaré Anal. Non Linéaire 24(1), 113–137 (2007)
Dacorogna, B.: Quasiconvexity and relaxation of nonconvex problems in the calculus of variations. J. Funct. Anal. 46(1), 102–118 (1982)
Dacorogna, B.: Direct Methods in the Calculus of Variations, Volume 78 of Applied Mathematical Sciences. Springer, New York (2008)
Dal Maso, G.: An introduction to $$\Gamma $$ Γ -Convergence. Progress in Nonlinear Differential Equations and their Applications, 8. Birkhäuser Boston Inc., Boston (1993)
Fonseca, I.: The lower quasiconvex envelope of the stored energy function for an elastic crystal. J. Math. Pures Appl. (9) 67(2), 175–195 (1988)
Gurtin, M.E., Podio-Guidugli, P.: The thermodynamics of constrained materials. Arch. Ration. Mech. Anal. 51, 192–208 (1973)
Licht, Ch., Michaille, G.: Global-local subadditive ergodic theorems and application to homogenization in elasticity. Ann. Math. Blaise Pascal 9(1), 21–62 (2002)
Müller, S.: Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Ration. Mech. Anal. 99(3), 189–212 (1987)
Sychev, M.A.: First general lower semicontinuity and relaxation results for strong materials. J. Convex Anal. 17(1), 183–202 (2010)