Homogenization of unbounded integrals with quasiconvex growth

Omar Anza Hafsa1,2, Jean-Philippe Mandallena2,1, Hamdi Zorgati3
1Laboratoire LMGC, UMR-CNRS 5508, Montpellier, France
2Laboratoire MIPA, Université de Nîmes, Nîmes, France
3Laboratoire EDP, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86(2), 125–145 (1984)

Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory, Volume 314 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1996)

Anza Hafsa, O.: On the integral representation of relaxed functionals with convex bounded constraints. ESAIM Control Optim. Calc. Var. 16(1), 37–57 (2010)

Anza Hafsa, O., Mandallena, J.-P.: Homogenization of nonconvex integrals with convex growth. J. Math. Pures Appl. 96(2), 167–189 (2011)

Anza Hafsa, O., Mandallena, J.-P.: Homogenization of unbounded singular integrals in $$W^{1,\infty }$$ W 1 , ∞ . Ric. Mat. 61(2), 185–217 (2012)

Anza Hafsa, O., Mandallena, J.-P.: On the relaxation of unbounded multiple integrals. ArXiv e-prints, July (2012)

Anza Hafsa, O., Mandallena, J.-P.: Radial representation of lower semicontinuous envelope. Bollettino dell’Unione Matematica Italiana 7(1), 1–18 (2014)

Akcoglu, M.A., Krengel, U.: Ergodic theorems for superadditive processes. J. Reine Angew. Math. 323, 53–67 (1981)

Bouchitté, G., Bellieud, M.: Regularization of a set function: application to integral representation. Ricerche Mat. 49, 79–93 (2000)

Bouchitté, G., Fonseca, I., Mascarenhas, L.: A global method for relaxation. Arch. Ration. Mech. Anal. 145(1), 51–98 (1998)

Braides, A.: Homogenization of some almost periodic coercive functional. Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 9(1), 313–321 (1985)

Carbone, L., Cioranescu, D., De Arcangelis, R., Gaudiello, A.: Homogenization of unbounded functionals and nonlinear elastomers. The general case. Asymptot. Anal. 29(3–4), 221–272 (2002)

Carbone, L., Cioranescu, D., De Arcangelis, R., Gaudiello, A.: Homogenization of unbounded functionals and nonlinear elastomers. The case of the fixed constraints set. ESAIM Control Optim. Calc. Var. 10(1), 53–83 (2004). (electronic)

Cardone, G., Esposito, A.C., Paderni, G.: Homogenization of Dirichlet and Neumann problems with gradient constraints. Adv. Math. Sci. Appl. 16(2), 447–465 (2006)

Carbone, L., De Arcangelis, R.: Unbounded functionals in the calculus of variations, volume 125 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL, (2002), Representation, relaxation, and homogenization

De Arcangelis, R.: On the relaxation of some classes of pointwise gradient constrained energies. Ann. Inst. H. Poincaré Anal. Non Linéaire 24(1), 113–137 (2007)

Dacorogna, B.: Quasiconvexity and relaxation of nonconvex problems in the calculus of variations. J. Funct. Anal. 46(1), 102–118 (1982)

Dacorogna, B.: Direct Methods in the Calculus of Variations, Volume 78 of Applied Mathematical Sciences. Springer, New York (2008)

Dal Maso, G.: An introduction to $$\Gamma $$ Γ -Convergence. Progress in Nonlinear Differential Equations and their Applications, 8. Birkhäuser Boston Inc., Boston (1993)

Fonseca, I.: The lower quasiconvex envelope of the stored energy function for an elastic crystal. J. Math. Pures Appl. (9) 67(2), 175–195 (1988)

Gurtin, M.E., Podio-Guidugli, P.: The thermodynamics of constrained materials. Arch. Ration. Mech. Anal. 51, 192–208 (1973)

Licht, Ch., Michaille, G.: Global-local subadditive ergodic theorems and application to homogenization in elasticity. Ann. Math. Blaise Pascal 9(1), 21–62 (2002)

Müller, S.: Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Ration. Mech. Anal. 99(3), 189–212 (1987)

Sychev, M.A.: First general lower semicontinuity and relaxation results for strong materials. J. Convex Anal. 17(1), 183–202 (2010)