Homogenization of nonlinear reaction-diffusion equation with a large reaction term

Springer Science and Business Media LLC - Tập 56 Số 1 - Trang 141-161 - 2010
Grégoire Allaire1, Andrey Piatnitski2
1CMAP, Ecole Polytechnique, 91128 Palaiseau, France
2Narvik University College, P.O. Box 385, 8505, Narvik, Norway

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allaire G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

Allaire G., Capdeboscq Y., Piatnitski A., Siess V., Vanninathan M.: Homogenization of periodic systems with large potentials. Archive Rat. Mech. Anal. 174, 179–220 (2004)

Allaire, G., Mikelić, A., Piatnitski, A.: Homogenization approach to the dispersion theory for reactive transport through porous media. SIAM. J. Math. Anal. (to appear)

Allaire, G., Raphael, A.L.: Homogenization of a convection-diffusion model with reaction in a porous medium. C.R. Acad. Sci. Paris, t.344, Série I, pp. 523–528 (2007)

Bensoussan A., Lions J.-L., Papanicolaou G.: Asymptotic analysis for periodic structures. North-Holland, Amsterdam (1978)

Capdeboscq, Y.: Homogenization of a diffusion with drift. C.R. Acad. Sci. Paris, t.327, Série I, pp. 807–812 (1998)

Capdeboscq Y.: Homogenization of a neutronic critical diffusion problem with drift. Proc. Roy. Soc. Edinburgh Sect. A 132(3), 567–594 (2002)

Donato, P., Piatnitski, A.: Averaging of nonstationary parabolic operators with large lower order terms. GAKUTO International Series, Math. Sci. Appl., vol. 24, pp.153–165, Multi Scale Problems and Asymptotic Analysis (2005)

Larsen E.W., Williams M.: Neutron drift in heterogeneous media. Nucl. Sci. Eng. 65, 290–302 (1978)

Marusic-Paloka E., Piatnitski A.: Homogenization of a nonlinear convection-diffusion equation with rapidly oscillating coefficients and strong convection. J. Lond. Math. Soc. 72(2), 391–409 (2005)

Mauri R.: Dispersion, convection and reaction in porous media. Phys. Fluids A 3, 743–755 (1991)

Mikelić A., Devigne V., van Duijn C.J.: Rigorous upscaling of the reactive flow through a pore, under dominant Peclet and Damkohler numbers. SIAM J. Math. Anal. 38(4), 1262–1287 (2006)

Nguetseng G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20(3), 608–623 (1989)

Perthame B., Souganidis P.: Asymmetric potentials and motor effect: a homogenization approach. Annales de l’Institut Henri Poincaré (c) Non Linear Analysis 26(6), 2055–2071 (2009)