Homogenization of monotone parabolic problems with several temporal scales
Tóm tắt
Từ khóa
Tài liệu tham khảo
G. Allaire, M. Briane: Multiscale convergence and reiterated homogenisation. Proc. R. Soc. Edinb., Sect. A 126 (1996), 297–342.
A. Bensoussan, J.-L. Lions, G. Papanicolaou: Asymptotic analysis for periodic structures. Studies in Mathematics and its Applications, Vol. 5. North-Holland Publishing, Amsterdam-New York-Oxford, 1978.
L.C. Evans: The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. R. Soc. Edinb., Sect. A 111 (1989), 359–375.
L. Flodén, M. Olsson: Reiterated homogenization of some linear and nonlinear monotone parabolic operators. Can. Appl. Math. Q. 14 (2006), 149–183.
L. Flodén, M. Olsson: Homogenization of some parabolic operators with several time scales. Appl. Math. 52 (2007), 431–446.
L. Flodén, A. Holmbom, M. Olsson, N. Svanstedt: Reiterated homogenization of monotone parabolic problems. Ann. Univ. Ferrara, Sez. VII Sci. Mat. 53 (2007), 217–232.
A. Holmbom: Some modes of convergence and their application to homogenization and optimal composites design. Doctoral thesis 1996:208 D. Department of Mathematics, Luleå University, Luleå, 1996.
A. Holmbom: Homogenization of parabolic equations—an alternative approach and some corrector-type results. Appl. Math. 42 (1997), 321–343.
A. Holmbom, J. Silfver: On the convergence of some sequences of oscillating functionals. WSEAS Trans. Math. 5 (2006), 951–956.
A. Holmbom, N. Svanstedt, N. Wellander: Multiscale convergence and reiterated homogenization of parabolic problems. Appl. Math. 50 (2005), 131–151.
R.N. Kun’ch, A.A. Pankov: G-convergence of the monotone parabolic operators. Dokl. Akad. Nauk Ukr. SSR, Ser. A (1986), 8–10. (In Russian.)
J.-L. Lions, D. Lukkassen, L.-E. Persson, P. Wall: Reiterated homogenization of nonlinear monotone operators. Chin. Ann. Math., Ser. B 22 (2001), 1–12.
M. L. Mascarenhas, A.-M. Toader: Scale convergence in homogenization. Numer. Funct. Anal. Optimization 22 (2001), 127–158.
F. Murat: H-convergence. Séminaire d’analyse fonctionelle et numérique de l’Université d’Alger. 1978.
G. Nguetseng: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608–623.
G. Nguetseng, J. L. Woukeng: Deterministic homogenization of parabolic monotone operators with time dependent coefficients. Electron. J. Differ. Equ., paper No. 82 (2004). Electronic only.
G. Nguetseng, J. L. Woukeng: Σ-convergence of nonlinear parabolic operators. Nonlinear Anal., Theory Methods Appl. 66 (2007), 968–1004.
J. Persson: Homogenisation of monotone parabolic problems with several temporal scales: The detailed arXiv e-print version. arXiv:1003.5523 [math.AP].
S. Spagnolo: Sul limite delle soluzioni di problemi di Cauchy relativi all’equazione del calore. Ann. Sc. Norm. Sup. Pisa, Sci. Fis. Mat., III. Ser. 21 (1967), 657–699. (In Italian.)
N. Svanstedt: G-convergence and homogenization of sequences of linear and nonlinear partial differential operators. Doctoral thesis 1992:105 D. Department of Mathematics, Luleå University, Luleå, 1992.
L. Tartar: Cours peccot. Collège de France. 1977, unpublished, partially written in [15].
L. Tartar: Quelques remarques sur l’homogénéisation. In: Functional Analysis and Numerical Analysis, Proc. Japan-France Seminar 1976 (M. Fujita, ed.). Society for the Promotion of Science, 1978, pp. 468–482.