Homogenization of Heat Transfer Process in Composite Materials
Tóm tắt
Từ khóa
Tài liệu tham khảo
M. Amar, D. Andreucci, P. Bisegna and R. Gianni, A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: The nonlinear case, Differential Integral Equations, 26 (9-10) (2013), 885–912.
J.L. Auriault and H. Ene, Macroscopic modelling of heat transfer in composites with interfacial thermal barrier, Internat. J. Heat and Mass Transfer 37, (1994), 2885–2892.
E. Canon and J.N. Pernin, Homogénéisation d’un problème de diffusion en milieu composite avec barrière à l’interface, C. R. Acad. Sci., Series I, Math. 325 (1) (1997), 123–126.
H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, Oxford, At the Clarendon Press, 1959.
D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization, C. R. Acad. Sci. Paris, Série 1, 335 (2002), 99–104.
D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal. 40 (4) (2008), 1585–1620.
D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes, SIAM J. Math. Anal. 44 (2) (2012), 718–760.
D. Cioranescu, P. Donato, An Introduction to Homogenization, Oxford Lecture Series in Mathematics and Its Applications, 1999.
D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains, Portugaliae Mathematica, 63 (4) (2006), 467–496.
P. Donato, Some corrector results for composites with imperfect interface, Rend. Math. Ser. VII 26 (2006), 189–209.
P. Donato, L. Faella and S. Monsurrò, Homogenization of the Wave Equation in Composites with Imperfect Interface: A Memory Effect, J. Math. Pures Appl. 87 (2) (2007), 119–143.
P. Donato, L. Faella and S. Monsurrò, Correctors for the Homogenization of a Class of Hyperbolic Equations with Imperfect Interfaces, SIAM J. Math. Anal., 40 (5) (2009), 1952–1978.
P. Donato and E. C. Jose, Corrector Results for a Parabolic Problem with a Memory Effect, ESAIM: Mathematical Modeling and Numerical Analysis 44 (3) (2010), 421–454.
P. Donato and S. Monsurrò, Homogenization of two heat conductors with an interfacial contact resistance, Analysis and Applications, 2 (3) (2004), 247–273.
P. Donato, K. H. Le Nguyen, R. Tardieu, The Periodic Unfolding Method for a Class of Imperfect Transmission Problems, J. Math. Sciences, 176 (6) (2011), 891–927.
P. Donato, K. H. Le Nguyen, Homogenization of diffusion problems with a nonlinear interfacial resistance, Nonlinear Differential Equations and Applications NoDea, 2015, DOI: 10.1007/s0003001503252.
H.I. Ene, On the microstructure models of porous media, Rev. Roumaine Math. Pures Appl., 46 (2–3) (2001), 289–295.
H.I. Ene and D. Poliševski, Model of diffusion in partially fissured media, ZAMP 53 (2002), 1052–1059.
L. Faella and S. Monšurrò, Memory Effects Arising in the Homogenization of Composites with Inclusions, Topics on Mathematics for Smart Systems, World Sci. Publ., Hackensack, NJ, (2007), 107–121.
H.K. Hummel, Homogenization for heat tranfer in polycrystals with interfacial resistances, Appli. An. 75 (3–4), (2000), 403–424.
E.C. Jose, Homogenization of a Parabolic Problem with an Imperfect Interface, Rev. Roumaine Math. Pures Appl., 54 (3) (2009), 189–222.
M.A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, International Series of Monographs in Pure and Applied Mathematics, Pergamon Press, 1964.
R. Lipton, Heat conduction in fine scale mixtures with interfacial contact resistance, Siam J. Appl. Math., 58 (1) (1998), 55–72.
R. Lipton and B. Vernescu, Composite with imperfect interface, Proc. R. Soc. Lond. Ser. A, 452, (1996), 329–358.
S. Monsurrò, Homogenization of a two-component composite with interfacial thermal barrier, Adv. in Math. Sci. Appl. 13 (1) (2003), 43–63.
S. Monsurrò, Erratum for the paper Homogenization of a two-component composite with interfacial thermal barrier, Adv. in Math. Sci. Appl. 14 (2004), 375–377.
J.N. Pernin, Homogénéisation d’un problème de diffusion en milieu composite à deux composantes, C.R. Acad. Sci. Paris 321, série I (1995), 949–952.
C. Timofte, Upscaling in nonlinear diffusion problems in composite materials, Progress in Industrial Mathematics at ECMI (2006), 328–332.
C. Timofte, Multiscale analysis of diffusion processes in composite media, Computers and Mathematics with Applications 66 (2013), 1573–1580.