Homogenisation of one-dimensional discrete optimal transport

Journal de Mathématiques Pures et Appliquées - Tập 139 - Trang 204-234 - 2020
Peter Gladbach1, Eva Kopfer2, Jan Maas3, Lorenzo Portinale3
1Mathematisches Institut, Universität Leipzig, Augustusplatz 5, 04103 Leipzig, Germany
2Institut für Angewandte Mathematik, Universität Bonn, Endenicher Allee 60, 53115, Bonn, Germany
3Institute of Science and Technology Austria (IST Austria), am Campus 1, 3400 Klosterneuburg, Austria

Tài liệu tham khảo

Al Reda, 2017, Interpretation of finite volume discretization schemes for the Fokker-Planck equation as gradient flows for the discrete Wasserstein distance, vol. 17, 400 Ambrosio, 2008, Gradient Flows in Metric Spaces and in the Space of Probability Measures Benamou, 2000, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84, 375, 10.1007/s002110050002 Burago, 2001, A Course in Metric Geometry, vol. 33 Chow, 2012, Fokker-Planck equations for a free energy functional or Markov process on a graph, Arch. Ration. Mech. Anal., 203, 969, 10.1007/s00205-011-0471-6 Disser, 2015, On gradient structures for Markov chains and the passage to Wasserstein gradient flows, Netw. Heterog. Media, 10, 233, 10.3934/nhm.2015.10.233 Dondl Erbar, 2018, Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for Markov chains with non-negative Ricci curvature, J. Funct. Anal., 274, 3056, 10.1016/j.jfa.2018.03.011 Erbar, 2017, Ricci curvature bounds for weakly interacting Markov chains, Electron. J. Probab., 22, 10.1214/17-EJP49 Erbar, 2012, Ricci curvature of finite Markov chains via convexity of the entropy, Arch. Ration. Mech. Anal., 206, 997, 10.1007/s00205-012-0554-z Erbar, 2014, Gradient flow structures for discrete porous medium equations, Discrete Contin. Dyn. Syst., 34, 1355, 10.3934/dcds.2014.34.1355 Erbar, 2015, Discrete Ricci curvature bounds for Bernoulli-Laplace and random transposition models, Ann. Fac. Sci. Toulouse, 24, 781, 10.5802/afst.1464 Eymard, 2000, Finite volume methods, vol. VII, 713, 10.1016/S1570-8659(00)07005-8 Fathi, 2016, Entropic Ricci curvature bounds for discrete interacting systems, Ann. Appl. Probab., 26, 1774, 10.1214/15-AAP1133 García Trillos Gigli, 2013, Gromov–Hausdorff convergence of discrete transportation metrics, SIAM J. Math. Anal., 45, 879, 10.1137/120886315 Gladbach Jordan, 1998, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29, 1, 10.1137/S0036141096303359 Maas, 2011, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal., 261, 2250, 10.1016/j.jfa.2011.06.009 Mielke, 2011, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24, 1329, 10.1088/0951-7715/24/4/016 Mielke, 2013, Geodesic convexity of the relative entropy in reversible Markov chains, Calc. Var. Partial Differ. Equ., 48, 1, 10.1007/s00526-012-0538-8 Mielke, 2016, On evolutionary Γ-convergence for gradient systems, vol. 3, 187 Mielke, 2016, Deriving effective models for multiscale systems via evolutionary Γ-convergence, 235 Peyré, 2019, Computational optimal transport, Found. Trends Mach. Learn., 11, 355, 10.1561/2200000073 Santambrogio, 2015, Optimal Transport for Applied Mathematicians, vol. 87 Villani, 2003, Topics in Optimal Transportation, vol. 58 Villani, 2008