Homogeneous Lyapunov functions and necessary conditions for stabilization

Rodolphe Sepulchre1, Dirk Aeyels2
1Department of Electrical and Computer Engineering, University of California, 93106, Santa Barbara, California, USA
2Department of Systems Dynamics, Universiteit Gent Technologiepark-Zwijnaarde 9 9052 Gent, Belgium

Tóm tắt

Từ khóa


Tài liệu tham khảo

Artstein, Z., Stabilization with relaxed controls,Nonlinear Analysis, Theory, Methods and Applications, Vol. 7, No. 11, 1983, pp. 1163?1173.

Brockett, R. W., Asymptotic stability and feedback stabilization, inDifferential Geometric Control Theory, R. W. Brockett, R. S. Millmann, and H. J. Sussmann (eds.), Progress in Mathematics, Vol. 27, BirkhÄuser, Boston, 1983, pp. 181?191.

Coron, J. M., A necessary condition for feedback stabilization, Systems and Control Letters, Vol. 14, 1989, pp. 227?232.

Coron, J. M., Linearized control systems and applications to smooth stabilization,SIAM Journal of Control and Optimization, Vol. 32, No. 2, 1994, pp. 348?386.

Coron, J. M., Stabilization of controllable systems, inNonholonomic Geometry, A. Bellaiche and J. Risler (eds.), Progress in Mathematics, BirkhÄuser, Boston, to appear.

Coron, J. M., and Praly, L., Adding an integrator for the stabilization problem,Systems and Control Letters, Vol. 17, 1991, pp. 89?104.

Dayawansa, W. P., Asymptotic stabilization of low-dimensional systems, inNonlinear Synthesis, Progress in Systems and Control Theory, Vol. 9, BirkhÄuser, Boston, 1991.

Dayawansa, W. P., Recent advances in the stabilization problem for low-dimensional systems,Proceedings of IFAC Nonlinear Control Systems Design Conference, Bordeaux, 1992, M. Fliess (ed.), pp. 1?8.

Hermes, H., Nilpotent and high-order approximations of vector fields systems,SIAM Review, Vol. 33, 1991, pp. 238?264.

Hirsch, M. W.,Differential Topology, Springer-Verlag, New York, 1976.

Hocking, J. G., and Young, G. S.,Topology, Addison-Wesley, Reading, MA, 1961.

Golubitsky, M., and Guillemin, V.,Stable Mappings and Their Singularities, Graduate Texts in Mathematics, Vol. 14, Springer-Verlag, New York, 1973.

Kailath, T.,Linear Systems, Prenctice-Hall, Englewood Cliffs, NJ, 1980.

Kawski, M., High-order local controllability, inNonlinear Controllability and Optimal Control, H. J. Sussmann (ed.), Pure and Applied Mathematics, Vol. 133, Academic Press, New York, 1990, pp. 431?467.

Krasnoselskii, M. A., and Zabreiko, P. P.,Geometric Methods in Nonlinear Analysis, Springer-Verlag, Berlin, 1983.

Rosier, L., Homogeneous Lyapunov function for continuous vector field,Systems and Control Letters, Vol. 19, 1992, pp. 467?473.

Sepulchre, R., Ph.D. dissertation, Louvain-La-Neuve, Belgium, September 1994.

Sepulchre, R., and Aeyels, D., Stabilization does not imply homogeneous stabilization for controllable homogeneous systems,SIAM Journal of Control and Optimization, to appear.

Sepulchre, R., and Aeyels, D., Adding an integrator to a nonstabilizable planar homogeneous system,Proceedings of IFAC Nonlinear Control Systems Design Conference, Tahoe City, 1995, pp. 170?175.

Sontag, E. D., A Lyapunov-like characterization of asymptotic controllability,SIAM Journal of Control and Optimization, Vol. 21, No. 3, 1983, pp. 462?471.

Sontag, E. D.,Mathematical Control Theory, Springer-Verlag, New York, 1990.

Wilson, F. W., The structure of the level surfaces of a Lyapunov function,Journal of Differential Equations, Vol. 3, 1967, pp. 323?329.