Homoclinic solutions for a nonlinear second order differential system with -Laplacian operator

Nonlinear Analysis: Real World Applications - Tập 12 - Trang 525-534 - 2011
Shiping Lu

Tài liệu tham khảo

Tang, 2009, Homoclinic solutions for a class of second-order Hamilitonian systems, J. Math. Anal. Appl., 354, 539, 10.1016/j.jmaa.2008.12.052 Ziheng Zhang, Rong Yuan, Homoclinic solutions for a class of non-autonomous subquadratic second-order Hamilitonian systems, 2009, doi:10,1016/j.na.2009.02.071. Tan, 2008, Homoclinic solutions for a class of second-order Hamilitonian systems, Nonlinear Anal. Izydorek, 2007, Homoclinic solutions for nonautonomous second-order Hamiltonian systems with a coercive potential, J. Math. Anal. Appl., 335, 1119, 10.1016/j.jmaa.2007.02.038 Rabinowitz, 1990, Homoclinic orbits for a class of Hamilitonian systems, Proc. Roy. Soc. Edinburgh Sect., A114, 33, 10.1017/S0308210500024240 Lzydorek, 2005, Homoclinic solutions for a class of the second order Hamilitonian systems, J. Differential Equations, 219, 375, 10.1016/j.jde.2005.06.029 Tang, 2008, Homoclinic solutions for ordinary p-Laplacian systems with a coercive potential, Nonlinear Anal. Mawhin, 1989