Homoclinic and heteroclinic orbits for a class of Hamiltonian systems

Paul H. Rabinowitz1
1Department of Mathematics and Center for the Mathematical Sciences, University of Wisconsin, Madison, USA

Tóm tắt

The existence of a rich structure of homoclinic and heteroclinic solutions is established for a family of Hamiltonian systems that serve as a simpler model for the multiple pendulum system. The proof is based on recently developed arguments from the calculus of variations that have proved useful in finding actual solutions of an equation near approximate solution.

Từ khóa


Tài liệu tham khảo

Coti Zelati, V., Ekeland, I., Séré, E.: A variational approach to homoclinic orbits in Hamiltonian systems. Math. Ann.288, 133–160 (1990)

Séré, E.: A variational approach to the problem of homoclinic orbits of Hamiltonian systems. Math. Z. (in press 1992)

Coti Zelati, V., Rabinowitz, P.H.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Am. Math. Soc.4, 693–727 (1991)

Coti Zelati, V., Rabinowitz, P.H.: Homoclinic type solutions for a semilinear elliptic PDE on ℝitn. Commun. Pure Appl. Math. (in press, 1992)

Giannoni, F., Rabinowitz, P.H.: On the multiplicity of homoclinic orbits on Riemannian manifolds for a class of second order Hamiltonian systems (in progress.)

Kirchgraber, U., Stoffer, D.: Chaotic behavior in simple dynamical systems. SIAM Rev.32, 424–452 (1990)

Angenent, S.: The shadowing lemma for elliptic PDE, Dynamics of infinite dimensional systems. In: Chow, S.N., Hale, J.K. (eds.) Dynamics of infinite dimensional systems (NATO ASI Ser.7, vol 37) Berlin Heidelberg New York: Springer Verlag 1987

Li, Y.Y.: On −Δu=k(x)u 5 in ℝ3 (preprint)

Li, Y.Y.: On prescribing scalar curvature problem onS 3 andS 4 (preprint)

Smale, S.: Diffeomorphisms with many periodic points. In: Cairns, S. (ed.) Differential and combinatorial topology, pp. 63–80. Princeton: Princeton University Press 1965

Moser, J.: Stable and random motions in dynamical systems. Princeton: Princeton Univsity Press 1973

Chow, S.N., Deng, B., Terman, D.: The bifurcation of homoclinic and periodic orbits from two heteroclinic orbits. SIAM J. Math. Anal.21, 179–204 (1990)

Chow, S.N., Deng, B., Terman, D.: The bifurcation of homoclinic orbits from two heteroclinic orbits — a topological approach. Appl. Anal.42, 275–299 (1991)

Rabinowitz, P.H.: Periodic and heteroclinic solutions for a periodic Hamiltonian system. Ann. Inst. Henri Poincaré — Anal. Nonlineaire6, 331–346 (1989)

Rabinowitz, P.H.: Minimax methods in critical point theorem with applications to differential equations. CBMS Regional Conf. Ser. in Math. No. 68. Providence, R.I.: American Mathematical Society 1986