Homoclinic and heteroclinic orbits for a class of Hamiltonian systems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Coti Zelati, V., Ekeland, I., Séré, E.: A variational approach to homoclinic orbits in Hamiltonian systems. Math. Ann.288, 133–160 (1990)
Séré, E.: A variational approach to the problem of homoclinic orbits of Hamiltonian systems. Math. Z. (in press 1992)
Coti Zelati, V., Rabinowitz, P.H.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Am. Math. Soc.4, 693–727 (1991)
Coti Zelati, V., Rabinowitz, P.H.: Homoclinic type solutions for a semilinear elliptic PDE on ℝitn. Commun. Pure Appl. Math. (in press, 1992)
Giannoni, F., Rabinowitz, P.H.: On the multiplicity of homoclinic orbits on Riemannian manifolds for a class of second order Hamiltonian systems (in progress.)
Kirchgraber, U., Stoffer, D.: Chaotic behavior in simple dynamical systems. SIAM Rev.32, 424–452 (1990)
Angenent, S.: The shadowing lemma for elliptic PDE, Dynamics of infinite dimensional systems. In: Chow, S.N., Hale, J.K. (eds.) Dynamics of infinite dimensional systems (NATO ASI Ser.7, vol 37) Berlin Heidelberg New York: Springer Verlag 1987
Li, Y.Y.: On −Δu=k(x)u 5 in ℝ3 (preprint)
Li, Y.Y.: On prescribing scalar curvature problem onS 3 andS 4 (preprint)
Smale, S.: Diffeomorphisms with many periodic points. In: Cairns, S. (ed.) Differential and combinatorial topology, pp. 63–80. Princeton: Princeton University Press 1965
Moser, J.: Stable and random motions in dynamical systems. Princeton: Princeton Univsity Press 1973
Chow, S.N., Deng, B., Terman, D.: The bifurcation of homoclinic and periodic orbits from two heteroclinic orbits. SIAM J. Math. Anal.21, 179–204 (1990)
Chow, S.N., Deng, B., Terman, D.: The bifurcation of homoclinic orbits from two heteroclinic orbits — a topological approach. Appl. Anal.42, 275–299 (1991)
Rabinowitz, P.H.: Periodic and heteroclinic solutions for a periodic Hamiltonian system. Ann. Inst. Henri Poincaré — Anal. Nonlineaire6, 331–346 (1989)
Rabinowitz, P.H.: Minimax methods in critical point theorem with applications to differential equations. CBMS Regional Conf. Ser. in Math. No. 68. Providence, R.I.: American Mathematical Society 1986