Hom-Lie Algebras and a Coupled Toda Equation with Indefinite Matrices

Journal of Nonlinear Mathematical Physics - Tập 29 - Trang 896-904 - 2022
Xiao Bi1, Chuanzhong Li1
1College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, China

Tóm tắt

In this paper, we study one parameter deformation of a coupled Toda equation with indefinite matrices basing on the theory of Hom-Lie algebras. We construct a Miura transformation between the coupled Toda equation with indefinite matrices and the deformed coupled Toda equation with indefinite matrices. The Miura transformation can help us in deriving the solutions of the deformed coupled Toda equation with indefinite matrices.

Tài liệu tham khảo

Li, C.Z., He, J.S.: The extended \(Z_N\) -Toda hierarchy. Theor. Math. Phys. 185, 289–312 (2015) Kodama, Y., Ye, J.: Toda lattices with indefinite metric II: topology of the iso-spectral manifolds. Physica D 121, 89–108 (1998) Kodama, Y., Ye, J.: Iso-spectral deformations of general matrix and their reductions on Lie algebras. Commun. Math. Phys. 178, 765–788 (1996) Li, C.Z.: Finite dimensional tau functions of universal character hierarchy. Theor. Math. Phys. 206, 321–334 (2021) Moser, J.: Finitely many mass points on the line under the influence of an exponential potential-an integrable system in dynamical systems, Theory and Applications, ed. J. Moser, Lec. Notes in Phys, Vol. 38 (Springer, Berlin, 1975), pp. 467–497 Kodama, Y., Ye, J.: Toda lattice with indefinite metric. Physica D 91, 321–339 (1996) Hartwig, J., Larsson, D., Silvestrov, S.: Deformations of Lie algebras using -derivations. J. Algebra 295, 314–361 (2006) Sheng, Y.: Representations of Hom-Lie algebras. Algebra Represent Theory 15, 1081–1098 (2012) Sheng, Y., Xiong, Z.: On Hom-Lie algebras. Linear Multilinear Algebra 63, 2379–2395 (2015) Xiong, Z.: One parameter deformation of symmetric Toda lattice hierarchy. Commun. Math. Res. 34, 47–53 (2018) Li, J., Li, C.Z.: Extensions of the finite nonperiodic Toda lattice with indefinite metrices. J. Stat. Phys. 179, 901–919 (2020) Makhlouf, A., Silvestrov, S.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2, 51–64 (2008)