Holonomy and path structures in general relativity and Yang-Mills theory
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anandan, J. (1983). Holonomy groups in gravity and gauge fields, inProceedings Conference Differential Geometric Methods in Physics, Trieste 1981, G. Denardo and H. D. Doebner, eds., World Scientific, Singapore.
Atiyah, M. F. (1980). Geometrical aspects of gauge theories, inProceedings International Congress Mathematics, O. Lento, ed., Helsinki, pp. 881?885.
Barrett, J. W. (1985). The holonomy description of classical Yang-Mills theory and general relativity, Ph.D. thesis, University of London.
Bialynicki-Birula, I. (1963).Bulletin de l'Acad�mie Polonaise des Sciences,11, 135.
Cartan, E. (1922).Comptes Rendus,174, 437?439.
Chan, H.-M., and Tsou, S. T. (1986).Acta Physica Polonica B,17, 259?276.
Dirac, P. A. M. (1931).Proceedings of the Royal Society of London A,133, x-xxi.
Dugundji, J. (1966).Topology, Allyn and Bacon, Boston.
Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge.
Isham, C. J. (1981). Quantum gravity?An overview, inQuantum Gravity 2, A Second Oxford Symposium, C. J. Isham, R. Penrose, and D. W. Sciama, eds., Clarendon Press, Oxford.
Isham, C. J. (1984). Topological and global aspects of quantum theory, in1983 Les Houches Summer School Lectures ?Relativity Groups and Topology?, North-Holland, Amsterdam.
Kelly, R. M., Tod, K. P., and Woodhouse, N. M. J. (1986).Classical and Quantum Gravitation,3, 1151?1167.
Kobayashi, S. (1954).Comptes Rendus,238, 443?444.
Kobayashi, S., and Nomizu, K. (1963).Foundations of Differential Geometry, Volume 1, Interscience, New York.
Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1972).Gravitation, Freeman, San Francisco.
Sciama, D. W. (1962). On the analogy between charge and spin in general relativity, inRecent Developments in General Relativity, Pergamon, Oxford.
Spanier, E. H. (1966).Algebraic Topology, McGraw-Hill, New York.