Holomorphic connections on holomorphic bundles on Riemann surfaces
Tóm tắt
We investigate aspects of holomorphic connections on holomorphic principal bundles over a Riemann surface.
Tài liệu tham khảo
Atiyah, M.F.: On the Krull-Schmidt theorem with application to sheaves. Bull. Soc. Math. Fr. 84, 307–317 (1956)
Atiyah, M.F.: Complex analytic connections in fibre bundles. Trans. Am. Math. Soc. 85, 181–207 (1957)
Azad, H.; Biswas, I.: On holomorphic principal bundles over a compact Riemann surface admitting a flat connection. Math. Ann. 322, 333–346 (2002)
Biswas, I.; Dan, A.; Paul, A.: Criterion for logarithmic connections with prescribed residues. Manuscripta Math. 155, 77–88 (2018)
Biswas, I.; Dumitrescu, S.: Branched holomorphic Cartan geometries and Calabi-Yau manifolds. Int. Math. Res. Not. 7428–7458, 2019
Biswas, I.; Heu, V.: Non-flat extension of flat vector bundles, Int. J. Math. 26 (2015), no. 14, 1550114.
Biswas, I.; Subramanian, S.: Flat holomorphic connections on principal bundles over a projective manifold. Trans. Am. Math. Soc. 356, 3995–4018 (2004)
Borel, A.: Linear algebraic groups. Second edition, Graduate Texts in Mathematics, 126. Springer-Verlag, New York, 1991.
Druel, S.: A decomposition theorem for singular spaces with trivial canonical class of dimension at most five. Invent. Math. 211, 245–296 (2018)
Ehresmann, C.: Sur les espaces localement homogènes. L’Enseign. Math. 35, 317–333 (1936)
Fassarella, T.; Loray, F.: Flat parabolic vector bundles on elliptic curves. J. Reine Angew. Math. 761, 81–122 (2020)
Griffiths, P.; Harris, J.: Principles of algebraic geometry. Pure and Applied Mathematics. Wiley-Interscience, New York (1978)
Humphreys, J. E.: Linear algebraic groups. Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975
Jahnke, P.; Radloff, I.: Projective uniformization, extremal Chern classes and quaternionic Shimura curves. Math. Ann. 363, 753–776 (2015)
Kobayashi, S.; Nomizu, K.: Foundations of differential geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963
Simpson, C.T.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75, 5–95 (1992)
Weil, A.: Généralisation des fonctions abéliennes. J. Math. Pures Appl. 17, 47–87 (1938)