Holomorphic connections on holomorphic bundles on Riemann surfaces

Arabian Journal of Mathematics - Tập 10 - Trang 285-299 - 2021
Hassan Azad1, Indranil Biswas2
1Abdus Salam School of Mathematical Sciences, GC University Lahore, Lahore, Pakistan
2School of Mathematics, Tata Institute of Fundamental Research, Mumbai, India

Tóm tắt

We investigate aspects of holomorphic connections on holomorphic principal bundles over a Riemann surface.

Tài liệu tham khảo

Atiyah, M.F.: On the Krull-Schmidt theorem with application to sheaves. Bull. Soc. Math. Fr. 84, 307–317 (1956) Atiyah, M.F.: Complex analytic connections in fibre bundles. Trans. Am. Math. Soc. 85, 181–207 (1957) Azad, H.; Biswas, I.: On holomorphic principal bundles over a compact Riemann surface admitting a flat connection. Math. Ann. 322, 333–346 (2002) Biswas, I.; Dan, A.; Paul, A.: Criterion for logarithmic connections with prescribed residues. Manuscripta Math. 155, 77–88 (2018) Biswas, I.; Dumitrescu, S.: Branched holomorphic Cartan geometries and Calabi-Yau manifolds. Int. Math. Res. Not. 7428–7458, 2019 Biswas, I.; Heu, V.: Non-flat extension of flat vector bundles, Int. J. Math. 26 (2015), no. 14, 1550114. Biswas, I.; Subramanian, S.: Flat holomorphic connections on principal bundles over a projective manifold. Trans. Am. Math. Soc. 356, 3995–4018 (2004) Borel, A.: Linear algebraic groups. Second edition, Graduate Texts in Mathematics, 126. Springer-Verlag, New York, 1991. Druel, S.: A decomposition theorem for singular spaces with trivial canonical class of dimension at most five. Invent. Math. 211, 245–296 (2018) Ehresmann, C.: Sur les espaces localement homogènes. L’Enseign. Math. 35, 317–333 (1936) Fassarella, T.; Loray, F.: Flat parabolic vector bundles on elliptic curves. J. Reine Angew. Math. 761, 81–122 (2020) Griffiths, P.; Harris, J.: Principles of algebraic geometry. Pure and Applied Mathematics. Wiley-Interscience, New York (1978) Humphreys, J. E.: Linear algebraic groups. Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975 Jahnke, P.; Radloff, I.: Projective uniformization, extremal Chern classes and quaternionic Shimura curves. Math. Ann. 363, 753–776 (2015) Kobayashi, S.; Nomizu, K.: Foundations of differential geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963 Simpson, C.T.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75, 5–95 (1992) Weil, A.: Généralisation des fonctions abéliennes. J. Math. Pures Appl. 17, 47–87 (1938)