Holomorphic Curves into Algebraic Varieties Intersecting Moving Hypersurface Targets
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chen, Z., Ru, M., Yan, Q.: The truncated second main theorem and uniqueness theorems. Sci. China 53, 605–616 (2010)
Chen, Z., Ru, M., Yan, Q.: The degenerated second main theorem and Schmidt’s subspace theorem. Sci. China 55, 1367–1380 (2012)
Chen, Z., Ru, M., Yan, Q.: Schmidt’s subspace theorem with moving hypersurfaces. Int. Math. Res. Notices 2015, 6305–6329 (2015)
Dethloff, G., Tan, T.V.: A second main theorem for moving hypersurface targets. Houston J. Math. 37, 79–111 (2011)
Evertse, J.H., Ferretti, R.G.: Diophantine inequalities on projective varieties. Internat. Math. Res. Notices 25, 1295–1330 (2002)
Evertse, J.H., Ferretti, R.G.: A generalization of the subspace theorem with polynomials of higher degree. Develop. Math. 16, 175–198 (2008)
Hartshorne, R.: Algebraic Geometry. Grad Texts in Math, vol. 52. Springer, New York (1977)
Ji, Q., Yan, Q., Yu, G.: Holomorphic curves into algebraic varieties intersecting divisors in subgeneral position. Math. Ann. https://doi.org/10.1007/s00208-018-1661-4 (2018)
Le, G.: Schmidt’s subspace theorem with moving hypersurfaces. Int. J. Number Theory 11, 139–158 (2015)
Matsumura, H.: Commutative Algebra. Benjamin/Cummings Publication Company, Massachusetts (1980)
Ru, M.: A defect relation for holomorphic curves intersecting hypersurfaces. Am. J. Math. 126, 215–226 (2004)
Shiffman, B.: On holomorphic curves and meromorphic maps in projective space. Indiana Univ. Math. J. 28, 627–641 (1979)
Son, N.T., Tan, T.V., Thin, N.V.: Schmidt’s subspace theorem for moving hypersurface targets. J. Number Theory 186, 346–369 (2018)
Vojta, P.: Diophantine approximation and Nevanlinna theory. In: Colliot-Thélène, J.-L., Swinnerton-Dyer, P., Vojta, P. (eds.) Arithmetic Geometry, LNM 2009, pp 111–124. Springer, Berlin (2010)
Yan, Q., Vu, G.: Cartan’s conjecture for moving hypersurfaces. Math. Z. https://doi.org/10.1007/s00209-018-2138-6 (2018)
Zariski, O.: Generalized weight properties of the resultant of n + 1 polynomials in n indeterminates. Trans. AMS 41, 249–265 (1937)