Holomorphic Curves into Algebraic Varieties Intersecting Moving Hypersurface Targets

Gerd Dethloff1, Tran Van Tan2
1Laboratoire de Mathématiques de Bretagne Atlantique - UMR 6205, Université de Bretagne Occidentale (Brest), Brest Cedex 3, France
2Department of Mathematics, Hanoi National University of Education, Hanoi, Vietnam

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chen, Z., Ru, M., Yan, Q.: The truncated second main theorem and uniqueness theorems. Sci. China 53, 605–616 (2010)

Chen, Z., Ru, M., Yan, Q.: The degenerated second main theorem and Schmidt’s subspace theorem. Sci. China 55, 1367–1380 (2012)

Chen, Z., Ru, M., Yan, Q.: Schmidt’s subspace theorem with moving hypersurfaces. Int. Math. Res. Notices 2015, 6305–6329 (2015)

Corvaja, P., Zannier, U.: On a general Thue’s equation. Am. J. Math. 126, 1033–1055 (2004)

Dethloff, G., Tan, T.V.: A second main theorem for moving hypersurface targets. Houston J. Math. 37, 79–111 (2011)

Evertse, J.H., Ferretti, R.G.: Diophantine inequalities on projective varieties. Internat. Math. Res. Notices 25, 1295–1330 (2002)

Evertse, J.H., Ferretti, R.G.: A generalization of the subspace theorem with polynomials of higher degree. Develop. Math. 16, 175–198 (2008)

Hartshorne, R.: Algebraic Geometry. Grad Texts in Math, vol. 52. Springer, New York (1977)

Ji, Q., Yan, Q., Yu, G.: Holomorphic curves into algebraic varieties intersecting divisors in subgeneral position. Math. Ann. https://doi.org/10.1007/s00208-018-1661-4 (2018)

Le, G.: Schmidt’s subspace theorem with moving hypersurfaces. Int. J. Number Theory 11, 139–158 (2015)

Matsumura, H.: Commutative Algebra. Benjamin/Cummings Publication Company, Massachusetts (1980)

Ru, M.: On a general form of the second main theorem. Trans. AMS 349, 5093–5105 (1997)

Ru, M.: A defect relation for holomorphic curves intersecting hypersurfaces. Am. J. Math. 126, 215–226 (2004)

Ru, M.: Holomorphic curves into algebraic varieties. Ann. Math. 169, 255–267 (2009)

Shiffman, B.: On holomorphic curves and meromorphic maps in projective space. Indiana Univ. Math. J. 28, 627–641 (1979)

Son, N.T., Tan, T.V., Thin, N.V.: Schmidt’s subspace theorem for moving hypersurface targets. J. Number Theory 186, 346–369 (2018)

Vojta, P.: Diophantine approximation and Nevanlinna theory. In: Colliot-Thélène, J.-L., Swinnerton-Dyer, P., Vojta, P. (eds.) Arithmetic Geometry, LNM 2009, pp 111–124. Springer, Berlin (2010)

Yan, Q., Vu, G.: Cartan’s conjecture for moving hypersurfaces. Math. Z. https://doi.org/10.1007/s00209-018-2138-6 (2018)

Zariski, O.: Generalized weight properties of the resultant of n + 1 polynomials in n indeterminates. Trans. AMS 41, 249–265 (1937)