Holocene land cover change in south-western Amazonia inferred from paleoflood archives

Global and Planetary Change - Tập 174 - Trang 105-114 - 2019
Umberto Lombardo1,2, Javier Ruiz-Pérez2, Leonor Rodrigues1,3, Adrien Mestrot1, Francis Mayle4, Marco Madella2,5,6, Sönke Szidat7, Heinz Veit1
1Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
2CaSEs – Culture and Socio-Ecological Dynamics Research Group, Pompeu Fabra University, Ramon Trias Fargas 25-27, Mercè Rodoreda Building, 08005 Barcelona, Spain
3Centre d'Ecologie Fonctionelle et Evolutive, CNRS, Montpellier, Languedoc-Roussillon, France
4Department of Geography and Environmental Science, The University of Reading, Whiteknights, PO Box 227, Reading RG6 6AB, UK
5ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
6School of Geography, Archaeology and Environmental Studies, The University of the Witwatersrand, Johannesburg, South Africa
7Department of Chemistry and Biochemistry and Oeschger, Centre for Climate Change Research, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland

Tài liệu tham khảo

Aleman, 2012, Reconstructing savanna tree cover from pollen, phytoliths and stable carbon isotopes, J. Veg. Sci., 23, 187, 10.1111/j.1654-1103.2011.01335.x Baby, 1997, Neogene shortening contribution to crustal thickening in the back arc of the Central Andes, Geology, 25, 883, 10.1130/0091-7613(1997)025<0883:NSCTCT>2.3.CO;2 Baker, 2001, The history of South American tropical precipitation for the past 25,000 years, Science, 291, 640, 10.1126/science.291.5504.640 Baker, 2005, Holocene hydrologic variation at Lake Titicaca, Bolivia/Peru, and its relationship to North Atlantic climate variation, J. Quat. Sci., 20, 655, 10.1002/jqs.987 Barboni, 1999, Phytoliths as paleoenvironmental indicators, West Side Middle Awash Valley, Ethiopia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 152, 87, 10.1016/S0031-0182(99)00045-0 Barboni, 2007, Comparative study of modern phytolith assemblages from inter-tropical Africa, Palaeogeogr. Palaeoclimatol. Palaeoecol., 246, 454, 10.1016/j.palaeo.2006.10.012 Blatrix, 2018, The unique functioning of a pre-Columbian Amazonian floodplain fishery, Sci. Rep., 8, 5998, 10.1038/s41598-018-24454-4 Blinnikov, 2002, Reconstruction of the late Pleistocene grassland of the Columbia basin, Washington, USA, based on phytolith records in loess, Palaeogeogr. Palaeoclimatol. Palaeoecol., 177, 77, 10.1016/S0031-0182(01)00353-4 Boixadera, 2003, Hydromorphic and clay-related processes in soils from the Llanos de Moxos (northern Bolivia), Catena, 54, 403, 10.1016/S0341-8162(03)00134-6 Bremond, 2008, Phytolith indices as proxies of grass subfamilies on East African tropical mountains, Glob. Planet. Chang., 61, 209, 10.1016/j.gloplacha.2007.08.016 Brewer, 1955, Diatom skeletons and sponge spicules in the soils of New South Wales, Australian J. Sci., 17, 177 Brugger, 2016, Long-term man–environment interactions in the Bolivian Amazon: 8000 years of vegetation dynamics, Q. Sci. Rev., 132, 114, 10.1016/j.quascirev.2015.11.001 Calegari, 2013, Combining phytoliths and δ13C matter in Holocene palaeoenvironmental studies of tropical soils: an example of an Oxisol in Brazil, Quat. Int., 287, 47, 10.1016/j.quaint.2011.11.012 Cardoso Da Silva, 2002, Biogeographic patterns and conservation in the South American Cerrado: a tropical savanna hotspot: the Cerrado, which includes both forest and savanna habitats, is the second largest South American biome, and among the most threatened on the continent, Bioscience, 52, 225, 10.1641/0006-3568(2002)052[0225:BPACIT]2.0.CO;2 Carson, 2014, Environmental impact of geometric earthwork construction in pre-Columbian Amazonia, Proc. Natl. Acad. Sci., 111, 10497, 10.1073/pnas.1321770111 Clarke, 2003, The occurrence and significance of biogenic opal in the regolith, Earth Sci. Rev., 60, 175, 10.1016/S0012-8252(02)00092-2 De Freitas, 2001, Late quaternary vegetation dynamics in the Southern Amazon basin inferred from carbon isotopes in soil organic matter, Quat. Res., 55, 39, 10.1006/qres.2000.2192 DeCelles, 1996, Foreland basin systems, Basin Res., 8, 105, 10.1046/j.1365-2117.1996.01491.x Dickau, 2013, Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions, Rev. Palaeobot. Palynol., 193, 15, 10.1016/j.revpalbo.2013.01.004 Dorn, 1985, Stable carbon isotope ratios of rock varnish organic matter: a new paleoenvironmental indicator, Science, 227, 1472, 10.1126/science.227.4693.1472 Dumont, 1996, Neotectonics of the Subandes-Brazilian craton boundary using geomorphological data: the Marañon and Beni basins, Tectonophysics, 257, 137, 10.1016/0040-1951(95)00200-6 Dumont, 1994, Geodynamic environment of Quaternary morphostructures of the subandean foreland basins of Peru and Bolivia: Characteristics and study methods, Quat. Int., 21, 129, 10.1016/1040-6182(94)90027-2 Erickson, 2006, The domesticated landscape of the Bolivian Amazon, 236 Espurt, 2007, How does the Nazca Ridge subduction influence the modern Amazonian foreland basin?, Geology, 35, 515, 10.1130/G23237A.1 Feller, 1997, Physical control of soil organic matter dynamics in the tropics, Geoderma, 79, 69, 10.1016/S0016-7061(97)00039-6 Gu, 2016, Phytoliths as a method of identification for three genera of woody bamboos (Bambusoideae) in tropical Southwest China, J. Archaeol. Sci., 68, 46, 10.1016/j.jas.2015.08.003 Hanagarth, 1993 Hilbert, 2017, Evidence for mid-Holocene rice domestication in the Americas, Nat. Ecol. Evol., 1, 1693, 10.1038/s41559-017-0322-4 Hoffmann, 2012, Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes, Ecol. Lett., 15, 759, 10.1111/j.1461-0248.2012.01789.x Hogg, 2013, shcal13 southern hemisphere calibration, 0–50,000 years cal BP, Radiocarbon, 55, 1889, 10.2458/azu_js_rc.55.16783 Iriarte, 2012, ¿Las culturas del maíz?: Arqueobotánica de las sociedades hidráulicas de las tierras bajas sudamericanas, Amazônica, 4, 30, 10.18542/amazonica.v4i1.879 Iriarte, 2010, Late Holocene Neotropical agricultural landscapes: phytolith and stable carbon isotope analysis of raised fields from French Guianan coastal savannahs, J. Archaeol. Sci., 37, 2984, 10.1016/j.jas.2010.06.016 Junk, 2013, Current state of knowledge regarding South America wetlands and their future under global climate change, Aquat. Sci. Res. Bound., 75, 113, 10.1007/s00027-012-0253-8 Kraus, 1993, Eocene hydromorphic Paleosols; significance for interpreting ancient floodplain processes, J. Sediment. Res., 63, 453 Langstroth, 1996 Langstroth, 2011, Biogeography of the Llanos de Moxos: natural and anthropogenic determinants, Geogr. Helvetica, 66, 183, 10.5194/gh-66-183-2011 Larrea-Alcázar, 2011, Spatial patterns of biological diversity in a neotropical lowland savanna of northeastern Bolivia, Biodivers. Conserv., 20, 1167, 10.1007/s10531-011-0021-4 Lombardo, 2014, Neotectonics, flooding patterns and landscape evolution in southern Amazonia, Earth Surf. Dynam., 2, 493, 10.5194/esurf-2-493-2014 Lombardo, 2016, Alluvial plain dynamics in the southern Amazonian foreland basin, Earth Syst. Dynam., 7, 453, 10.5194/esd-7-453-2016 Lombardo, 2017, River logjams cause frequent large-scale forest die-off events in southwestern Amazonia, Earth Syst. Dynam., 8, 565, 10.5194/esd-8-565-2017 Lombardo, 2014, The origin of oriented lakes: evidence from the Bolivian Amazon, Geomorphology, 204, 502, 10.1016/j.geomorph.2013.08.029 Lombardo, 2011, Raised fields in the Bolivian Amazonia: a prehistoric green revolution or a flood risk mitigation strategy?, J. Archaeol. Sci., 38, 502, 10.1016/j.jas.2010.09.022 Lombardo, 2011, Eco-archaeological regions in the Bolivian Amazon: linking pre-Columbian earthworks and environmental diversity, Geogr. Helvet., 66, 173, 10.5194/gh-66-173-2011 Lombardo, 2012, Mid- to late-Holocene fluvial activity behind pre-Columbian social complexity in the southwestern Amazon basin, Holocene, 22, 1035, 10.1177/0959683612437872 Lombardo, 2013, Human–environment interactions in pre-Columbian Amazonia: the case of the Llanos de Moxos, Bolivia, Q. Int., 312, 109, 10.1016/j.quaint.2013.01.007 Lombardo, 2013, Early and middle Holocene hunter-gatherer occupations in western Amazonia: the hidden shell middens, PLoS One, 8, 10.1371/journal.pone.0072746 Lombardo, 2015, Soil properties and pre-Columbian settlement patterns in the Monumental Mounds Region of the Llanos de Moxos, Bolivian Amazon, Soil, 1, 65, 10.5194/soil-1-65-2015 Lombardo, 2016, Sonication improves the efficiency, efficacy and safety of phytolith extraction, Rev. Palaeobot. Palynol., 235, 1, 10.1016/j.revpalbo.2016.09.008 Lombardo, 2018, Alluvial plain dynamics and human occupation in SW Amazonia during the Holocene: a paleosol-based reconstruction, Q. Sci. Rev., 180, 30, 10.1016/j.quascirev.2017.11.026 Madella, 2005, International code for phytolith nomenclature 1.0, Ann. Bot., 96, 253, 10.1093/aob/mci172 Marengo, 2012, Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins, Clim. Dyn., 38, 1829, 10.1007/s00382-011-1155-5 Mariotti, 1994, Forest savanna ecotone dynamics in India as revealed by carbon isotope ratios of soil organic matter, Oecologia, 97, 475, 10.1007/BF00325885 May, 2015, Holocene floodplain soils along the Río Mamoré, northern Bolivia, and their implications for understanding inundation and depositional patterns in seasonal wetland settings, Sediment. Geol., 330, 74, 10.1016/j.sedgeo.2015.10.004 Mayle, 2008, Impact of a drier Early-Mid-Holocene climate upon Amazonian forests, Philos. Trans. R. Soc. B, 363, 1829, 10.1098/rstb.2007.0019 Mayle, 2000, Millennial-scale dynamics of southern Amazonian rain forests, Science, 290, 2291, 10.1126/science.290.5500.2291 Mayle, 2007, Long-term forest-savannah dynamics in the Bolivian Amazon: implications for conservation, Philos. Trans. R. Soc. B, 362, 291, 10.1098/rstb.2006.1987 McMichael, 2012, Sparse pre-Columbian human habitation in Western Amazonia, Science, 336, 1429, 10.1126/science.1219982 McPherson, 1993, Stable carbon isotope analysis of soil organic matter illustrates vegetation change at the grassland/woodland boundary in southeastern Arizona, USA, Oecologia, 93, 95, 10.1007/BF00321197 Morcote-Ríos, 2016, Phytoliths as a tool for archaeobotanical, palaeobotanical and palaeoecological studies in Amazonian palms, Bot. J. Linn. Soc., 182, 348, 10.1111/boj.12438 Navarro, 2011 Neumann, 2009, The Early Holocene palaeoenvironment of Ounjougou (Mali): Phytoliths in a multiproxy context, Palaeogeogr. Palaeoclimatol. Palaeoecol., 276, 87, 10.1016/j.palaeo.2009.03.001 Ovando, 2018, Multi-temporal flood mapping and satellite altimetry used to evaluate the flood dynamics of the Bolivian Amazon wetlands, Int. J. Appl. Earth Obs. Geoinf., 69, 27, 10.1016/j.jag.2018.02.013 Pessenda, 1998, The carbon isotope record in soils along a forest-cerrado ecosystem transect: implications for vegetation changes in the Rondonia state, southwestern Brazilian Amazon region, The Holocene, 8, 599, 10.1191/095968398673187182 Piperno, 2006 Piperno, 1996, Vegetational history of a site in the central amazon basin derived from phytolith and charcoal records from natural soils, Quat. Res., 45, 202, 10.1006/qres.1996.0020 Piperno, 1998 Plotzki, 2013, Geomorphological and sedimentary evidence for late Pleistocene to Holocene hydrological change along the Río Mamoré, Bolivian Amazon, J. S. Am. Earth Sci., 47, 230, 10.1016/j.jsames.2013.08.003 Plotzki, 2015, Geomorphology and evolution of the late Pleistocene to Holocene fluvial system in the south-eastern Llanos de Moxos, Bolivian Amazon, Catena, 127, 102, 10.1016/j.catena.2014.12.019 2004 Ratnam, 2011, When is a ‘forest’ a savanna, and why does it matter?, Glob. Ecol. Biogeogr., 20, 653, 10.1111/j.1466-8238.2010.00634.x Ratter, 1997, The Brazilian Cerrado vegetation and threats to its biodiversity, Ann. Bot., 80, 223, 10.1006/anbo.1997.0469 Regard, 2009, Geomorphic evidence for recent uplift of the Fitzcarrald Arch (Peru): a response to the Nazca Ridge subduction, Geomorphology, 107, 107, 10.1016/j.geomorph.2008.12.003 Rodrigues, 2015, Pre-Columbian agriculture in the Bolivian Lowlands: Construction history and management of raised fields in Bermeo, Catena, 132, 126, 10.1016/j.catena.2014.08.021 Rodrigues, 2016, An insight into pre-Columbian raised fields: the case of San Borja, Bolivian lowlands, Soil, 2, 367, 10.5194/soil-2-367-2016 Rodrigues, 2017, Linking soil properties and pre-Columbian agricultural strategies in the Bolivian lowlands: the case of raised fields in Exaltación, Q. Int., 437, 143, 10.1016/j.quaint.2015.11.091 Rodrigues, 2018, Design of pre-Columbian raised fields in the Llanos de Moxos, Bolivian Amazon: Differential adaptations to the local environment?, J. Archaeol. Sci. Rep., 17, 366 Schumm, 2002 Sheldon, 2009, Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols, Earth Sci. Rev., 95, 1, 10.1016/j.earscirev.2009.03.004 Strömberg, 2009, Methodological concerns for analysis of phytolith assemblages: does count size matter?, Quat. Int., 193, 124, 10.1016/j.quaint.2007.11.008 Strömberg, 2011, The Neogene transition from C3 to C4 grasslands in North America: assemblage analysis of fossil phytoliths, Paleobiology, 37, 50, 10.1666/09067.1 Szidat, 2014, 14 C analysis and sample preparation at the new Bern Laboratory for the Analysis of Radiocarbon with AMS (LARA), Radiocarbon, 56, 561, 10.2458/56.17457 Tieszen, 1989, Stable carbon isotopes in terrestrial ecosystem research, 167 Urrego, 2013, Holocene fires, forest stability and human occupation in south-western Amazonia, J. Biogeogr., 40, 521, 10.1111/jbi.12016 Vegas-Vilarrúbia, 2011, Quaternary palaeoecology and nature conservation: a general review with examples from the neotropics, Quat. Sci. Rev., 30, 2361, 10.1016/j.quascirev.2011.05.006 Walker, 2008, The Llanos de Mojos, 927 Wang, 2008, Paleovegetation reconstruction using δ13C of soil organic matter, Biogeosciences, 5, 1325, 10.5194/bg-5-1325-2008 Wanner, 2008, Mid- to late Holocene climate change: an overview, Quat. Sci. Rev., 27, 1791, 10.1016/j.quascirev.2008.06.013 Watling, 2016, Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions II: Southwestern Amazonian forests, Rev. Palaeobot. Palynol., 226, 30, 10.1016/j.revpalbo.2015.12.002 Watling, 2017, Impact of pre-Columbian “geoglyph” builders on Amazonian forests, Proc. Natl. Acad. Sci., 114, 1868, 10.1073/pnas.1614359114 Whitney, 2011, A 45 kyr palaeoclimate record from the lowland interior of tropical South America, Palaeogeogr. Palaeoclimatol. Palaeoecol., 307, 177, 10.1016/j.palaeo.2011.05.012 Whitney, 2013, Pre-Columbian landscape impact and agriculture in the Monumental Mound region of the Llanos de Moxos, lowland Bolivia, Quat. Res., 80, 207, 10.1016/j.yqres.2013.06.005 Wilcke, 2004, Soil carbon-13 natural abundance under native and managed vegetation in Brazil, Soil Sci. Soc. Am. J., 68, 827, 10.2136/sssaj2004.8270 Willis, 2010, Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data, Trends Ecol. Evol., 25, 583, 10.1016/j.tree.2010.07.006 Wynn, 2007, Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: implications for paleoecological interpretations of paleosols, Palaeogeogr. Palaeoclimatol. Palaeoecol., 251, 437, 10.1016/j.palaeo.2007.04.009