Holocene land cover change in south-western Amazonia inferred from paleoflood archives
Tài liệu tham khảo
Aleman, 2012, Reconstructing savanna tree cover from pollen, phytoliths and stable carbon isotopes, J. Veg. Sci., 23, 187, 10.1111/j.1654-1103.2011.01335.x
Baby, 1997, Neogene shortening contribution to crustal thickening in the back arc of the Central Andes, Geology, 25, 883, 10.1130/0091-7613(1997)025<0883:NSCTCT>2.3.CO;2
Baker, 2001, The history of South American tropical precipitation for the past 25,000 years, Science, 291, 640, 10.1126/science.291.5504.640
Baker, 2005, Holocene hydrologic variation at Lake Titicaca, Bolivia/Peru, and its relationship to North Atlantic climate variation, J. Quat. Sci., 20, 655, 10.1002/jqs.987
Barboni, 1999, Phytoliths as paleoenvironmental indicators, West Side Middle Awash Valley, Ethiopia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 152, 87, 10.1016/S0031-0182(99)00045-0
Barboni, 2007, Comparative study of modern phytolith assemblages from inter-tropical Africa, Palaeogeogr. Palaeoclimatol. Palaeoecol., 246, 454, 10.1016/j.palaeo.2006.10.012
Blatrix, 2018, The unique functioning of a pre-Columbian Amazonian floodplain fishery, Sci. Rep., 8, 5998, 10.1038/s41598-018-24454-4
Blinnikov, 2002, Reconstruction of the late Pleistocene grassland of the Columbia basin, Washington, USA, based on phytolith records in loess, Palaeogeogr. Palaeoclimatol. Palaeoecol., 177, 77, 10.1016/S0031-0182(01)00353-4
Boixadera, 2003, Hydromorphic and clay-related processes in soils from the Llanos de Moxos (northern Bolivia), Catena, 54, 403, 10.1016/S0341-8162(03)00134-6
Bremond, 2008, Phytolith indices as proxies of grass subfamilies on East African tropical mountains, Glob. Planet. Chang., 61, 209, 10.1016/j.gloplacha.2007.08.016
Brewer, 1955, Diatom skeletons and sponge spicules in the soils of New South Wales, Australian J. Sci., 17, 177
Brugger, 2016, Long-term man–environment interactions in the Bolivian Amazon: 8000 years of vegetation dynamics, Q. Sci. Rev., 132, 114, 10.1016/j.quascirev.2015.11.001
Calegari, 2013, Combining phytoliths and δ13C matter in Holocene palaeoenvironmental studies of tropical soils: an example of an Oxisol in Brazil, Quat. Int., 287, 47, 10.1016/j.quaint.2011.11.012
Cardoso Da Silva, 2002, Biogeographic patterns and conservation in the South American Cerrado: a tropical savanna hotspot: the Cerrado, which includes both forest and savanna habitats, is the second largest South American biome, and among the most threatened on the continent, Bioscience, 52, 225, 10.1641/0006-3568(2002)052[0225:BPACIT]2.0.CO;2
Carson, 2014, Environmental impact of geometric earthwork construction in pre-Columbian Amazonia, Proc. Natl. Acad. Sci., 111, 10497, 10.1073/pnas.1321770111
Clarke, 2003, The occurrence and significance of biogenic opal in the regolith, Earth Sci. Rev., 60, 175, 10.1016/S0012-8252(02)00092-2
De Freitas, 2001, Late quaternary vegetation dynamics in the Southern Amazon basin inferred from carbon isotopes in soil organic matter, Quat. Res., 55, 39, 10.1006/qres.2000.2192
DeCelles, 1996, Foreland basin systems, Basin Res., 8, 105, 10.1046/j.1365-2117.1996.01491.x
Dickau, 2013, Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions, Rev. Palaeobot. Palynol., 193, 15, 10.1016/j.revpalbo.2013.01.004
Dorn, 1985, Stable carbon isotope ratios of rock varnish organic matter: a new paleoenvironmental indicator, Science, 227, 1472, 10.1126/science.227.4693.1472
Dumont, 1996, Neotectonics of the Subandes-Brazilian craton boundary using geomorphological data: the Marañon and Beni basins, Tectonophysics, 257, 137, 10.1016/0040-1951(95)00200-6
Dumont, 1994, Geodynamic environment of Quaternary morphostructures of the subandean foreland basins of Peru and Bolivia: Characteristics and study methods, Quat. Int., 21, 129, 10.1016/1040-6182(94)90027-2
Erickson, 2006, The domesticated landscape of the Bolivian Amazon, 236
Espurt, 2007, How does the Nazca Ridge subduction influence the modern Amazonian foreland basin?, Geology, 35, 515, 10.1130/G23237A.1
Feller, 1997, Physical control of soil organic matter dynamics in the tropics, Geoderma, 79, 69, 10.1016/S0016-7061(97)00039-6
Gu, 2016, Phytoliths as a method of identification for three genera of woody bamboos (Bambusoideae) in tropical Southwest China, J. Archaeol. Sci., 68, 46, 10.1016/j.jas.2015.08.003
Hanagarth, 1993
Hilbert, 2017, Evidence for mid-Holocene rice domestication in the Americas, Nat. Ecol. Evol., 1, 1693, 10.1038/s41559-017-0322-4
Hoffmann, 2012, Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes, Ecol. Lett., 15, 759, 10.1111/j.1461-0248.2012.01789.x
Hogg, 2013, shcal13 southern hemisphere calibration, 0–50,000 years cal BP, Radiocarbon, 55, 1889, 10.2458/azu_js_rc.55.16783
Iriarte, 2012, ¿Las culturas del maíz?: Arqueobotánica de las sociedades hidráulicas de las tierras bajas sudamericanas, Amazônica, 4, 30, 10.18542/amazonica.v4i1.879
Iriarte, 2010, Late Holocene Neotropical agricultural landscapes: phytolith and stable carbon isotope analysis of raised fields from French Guianan coastal savannahs, J. Archaeol. Sci., 37, 2984, 10.1016/j.jas.2010.06.016
Junk, 2013, Current state of knowledge regarding South America wetlands and their future under global climate change, Aquat. Sci. Res. Bound., 75, 113, 10.1007/s00027-012-0253-8
Kraus, 1993, Eocene hydromorphic Paleosols; significance for interpreting ancient floodplain processes, J. Sediment. Res., 63, 453
Langstroth, 1996
Langstroth, 2011, Biogeography of the Llanos de Moxos: natural and anthropogenic determinants, Geogr. Helvetica, 66, 183, 10.5194/gh-66-183-2011
Larrea-Alcázar, 2011, Spatial patterns of biological diversity in a neotropical lowland savanna of northeastern Bolivia, Biodivers. Conserv., 20, 1167, 10.1007/s10531-011-0021-4
Lombardo, 2014, Neotectonics, flooding patterns and landscape evolution in southern Amazonia, Earth Surf. Dynam., 2, 493, 10.5194/esurf-2-493-2014
Lombardo, 2016, Alluvial plain dynamics in the southern Amazonian foreland basin, Earth Syst. Dynam., 7, 453, 10.5194/esd-7-453-2016
Lombardo, 2017, River logjams cause frequent large-scale forest die-off events in southwestern Amazonia, Earth Syst. Dynam., 8, 565, 10.5194/esd-8-565-2017
Lombardo, 2014, The origin of oriented lakes: evidence from the Bolivian Amazon, Geomorphology, 204, 502, 10.1016/j.geomorph.2013.08.029
Lombardo, 2011, Raised fields in the Bolivian Amazonia: a prehistoric green revolution or a flood risk mitigation strategy?, J. Archaeol. Sci., 38, 502, 10.1016/j.jas.2010.09.022
Lombardo, 2011, Eco-archaeological regions in the Bolivian Amazon: linking pre-Columbian earthworks and environmental diversity, Geogr. Helvet., 66, 173, 10.5194/gh-66-173-2011
Lombardo, 2012, Mid- to late-Holocene fluvial activity behind pre-Columbian social complexity in the southwestern Amazon basin, Holocene, 22, 1035, 10.1177/0959683612437872
Lombardo, 2013, Human–environment interactions in pre-Columbian Amazonia: the case of the Llanos de Moxos, Bolivia, Q. Int., 312, 109, 10.1016/j.quaint.2013.01.007
Lombardo, 2013, Early and middle Holocene hunter-gatherer occupations in western Amazonia: the hidden shell middens, PLoS One, 8, 10.1371/journal.pone.0072746
Lombardo, 2015, Soil properties and pre-Columbian settlement patterns in the Monumental Mounds Region of the Llanos de Moxos, Bolivian Amazon, Soil, 1, 65, 10.5194/soil-1-65-2015
Lombardo, 2016, Sonication improves the efficiency, efficacy and safety of phytolith extraction, Rev. Palaeobot. Palynol., 235, 1, 10.1016/j.revpalbo.2016.09.008
Lombardo, 2018, Alluvial plain dynamics and human occupation in SW Amazonia during the Holocene: a paleosol-based reconstruction, Q. Sci. Rev., 180, 30, 10.1016/j.quascirev.2017.11.026
Madella, 2005, International code for phytolith nomenclature 1.0, Ann. Bot., 96, 253, 10.1093/aob/mci172
Marengo, 2012, Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins, Clim. Dyn., 38, 1829, 10.1007/s00382-011-1155-5
Mariotti, 1994, Forest savanna ecotone dynamics in India as revealed by carbon isotope ratios of soil organic matter, Oecologia, 97, 475, 10.1007/BF00325885
May, 2015, Holocene floodplain soils along the Río Mamoré, northern Bolivia, and their implications for understanding inundation and depositional patterns in seasonal wetland settings, Sediment. Geol., 330, 74, 10.1016/j.sedgeo.2015.10.004
Mayle, 2008, Impact of a drier Early-Mid-Holocene climate upon Amazonian forests, Philos. Trans. R. Soc. B, 363, 1829, 10.1098/rstb.2007.0019
Mayle, 2000, Millennial-scale dynamics of southern Amazonian rain forests, Science, 290, 2291, 10.1126/science.290.5500.2291
Mayle, 2007, Long-term forest-savannah dynamics in the Bolivian Amazon: implications for conservation, Philos. Trans. R. Soc. B, 362, 291, 10.1098/rstb.2006.1987
McMichael, 2012, Sparse pre-Columbian human habitation in Western Amazonia, Science, 336, 1429, 10.1126/science.1219982
McPherson, 1993, Stable carbon isotope analysis of soil organic matter illustrates vegetation change at the grassland/woodland boundary in southeastern Arizona, USA, Oecologia, 93, 95, 10.1007/BF00321197
Morcote-Ríos, 2016, Phytoliths as a tool for archaeobotanical, palaeobotanical and palaeoecological studies in Amazonian palms, Bot. J. Linn. Soc., 182, 348, 10.1111/boj.12438
Navarro, 2011
Neumann, 2009, The Early Holocene palaeoenvironment of Ounjougou (Mali): Phytoliths in a multiproxy context, Palaeogeogr. Palaeoclimatol. Palaeoecol., 276, 87, 10.1016/j.palaeo.2009.03.001
Ovando, 2018, Multi-temporal flood mapping and satellite altimetry used to evaluate the flood dynamics of the Bolivian Amazon wetlands, Int. J. Appl. Earth Obs. Geoinf., 69, 27, 10.1016/j.jag.2018.02.013
Pessenda, 1998, The carbon isotope record in soils along a forest-cerrado ecosystem transect: implications for vegetation changes in the Rondonia state, southwestern Brazilian Amazon region, The Holocene, 8, 599, 10.1191/095968398673187182
Piperno, 2006
Piperno, 1996, Vegetational history of a site in the central amazon basin derived from phytolith and charcoal records from natural soils, Quat. Res., 45, 202, 10.1006/qres.1996.0020
Piperno, 1998
Plotzki, 2013, Geomorphological and sedimentary evidence for late Pleistocene to Holocene hydrological change along the Río Mamoré, Bolivian Amazon, J. S. Am. Earth Sci., 47, 230, 10.1016/j.jsames.2013.08.003
Plotzki, 2015, Geomorphology and evolution of the late Pleistocene to Holocene fluvial system in the south-eastern Llanos de Moxos, Bolivian Amazon, Catena, 127, 102, 10.1016/j.catena.2014.12.019
2004
Ratnam, 2011, When is a ‘forest’ a savanna, and why does it matter?, Glob. Ecol. Biogeogr., 20, 653, 10.1111/j.1466-8238.2010.00634.x
Ratter, 1997, The Brazilian Cerrado vegetation and threats to its biodiversity, Ann. Bot., 80, 223, 10.1006/anbo.1997.0469
Regard, 2009, Geomorphic evidence for recent uplift of the Fitzcarrald Arch (Peru): a response to the Nazca Ridge subduction, Geomorphology, 107, 107, 10.1016/j.geomorph.2008.12.003
Rodrigues, 2015, Pre-Columbian agriculture in the Bolivian Lowlands: Construction history and management of raised fields in Bermeo, Catena, 132, 126, 10.1016/j.catena.2014.08.021
Rodrigues, 2016, An insight into pre-Columbian raised fields: the case of San Borja, Bolivian lowlands, Soil, 2, 367, 10.5194/soil-2-367-2016
Rodrigues, 2017, Linking soil properties and pre-Columbian agricultural strategies in the Bolivian lowlands: the case of raised fields in Exaltación, Q. Int., 437, 143, 10.1016/j.quaint.2015.11.091
Rodrigues, 2018, Design of pre-Columbian raised fields in the Llanos de Moxos, Bolivian Amazon: Differential adaptations to the local environment?, J. Archaeol. Sci. Rep., 17, 366
Schumm, 2002
Sheldon, 2009, Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols, Earth Sci. Rev., 95, 1, 10.1016/j.earscirev.2009.03.004
Strömberg, 2009, Methodological concerns for analysis of phytolith assemblages: does count size matter?, Quat. Int., 193, 124, 10.1016/j.quaint.2007.11.008
Strömberg, 2011, The Neogene transition from C3 to C4 grasslands in North America: assemblage analysis of fossil phytoliths, Paleobiology, 37, 50, 10.1666/09067.1
Szidat, 2014, 14 C analysis and sample preparation at the new Bern Laboratory for the Analysis of Radiocarbon with AMS (LARA), Radiocarbon, 56, 561, 10.2458/56.17457
Tieszen, 1989, Stable carbon isotopes in terrestrial ecosystem research, 167
Urrego, 2013, Holocene fires, forest stability and human occupation in south-western Amazonia, J. Biogeogr., 40, 521, 10.1111/jbi.12016
Vegas-Vilarrúbia, 2011, Quaternary palaeoecology and nature conservation: a general review with examples from the neotropics, Quat. Sci. Rev., 30, 2361, 10.1016/j.quascirev.2011.05.006
Walker, 2008, The Llanos de Mojos, 927
Wang, 2008, Paleovegetation reconstruction using δ13C of soil organic matter, Biogeosciences, 5, 1325, 10.5194/bg-5-1325-2008
Wanner, 2008, Mid- to late Holocene climate change: an overview, Quat. Sci. Rev., 27, 1791, 10.1016/j.quascirev.2008.06.013
Watling, 2016, Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions II: Southwestern Amazonian forests, Rev. Palaeobot. Palynol., 226, 30, 10.1016/j.revpalbo.2015.12.002
Watling, 2017, Impact of pre-Columbian “geoglyph” builders on Amazonian forests, Proc. Natl. Acad. Sci., 114, 1868, 10.1073/pnas.1614359114
Whitney, 2011, A 45 kyr palaeoclimate record from the lowland interior of tropical South America, Palaeogeogr. Palaeoclimatol. Palaeoecol., 307, 177, 10.1016/j.palaeo.2011.05.012
Whitney, 2013, Pre-Columbian landscape impact and agriculture in the Monumental Mound region of the Llanos de Moxos, lowland Bolivia, Quat. Res., 80, 207, 10.1016/j.yqres.2013.06.005
Wilcke, 2004, Soil carbon-13 natural abundance under native and managed vegetation in Brazil, Soil Sci. Soc. Am. J., 68, 827, 10.2136/sssaj2004.8270
Willis, 2010, Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data, Trends Ecol. Evol., 25, 583, 10.1016/j.tree.2010.07.006
Wynn, 2007, Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: implications for paleoecological interpretations of paleosols, Palaeogeogr. Palaeoclimatol. Palaeoecol., 251, 437, 10.1016/j.palaeo.2007.04.009